研究报告

蓝光调控生物膜关键基因提高大肠杆菌耐酸性

  • 吴建菊 ,
  • 冯守帅
展开
  • (江南大学 生物工程学院,工业生物技术教育部重点实验室,江苏 无锡,214122)
第一作者:硕士研究生(冯守帅教授为通信作者,E-mail:fengss@jiangnan.edu.cn)

收稿日期: 2024-04-17

  修回日期: 2024-04-29

  网络出版日期: 2024-08-21

基金资助

国家自然科学基金项目(21878128)

Enhancing the acid resistance of Escherichia coli by blue light-regulated biofilm key genes

  • WU Jianju ,
  • FENG Shoushuai
Expand
  • (The Key Laboratory of Industrial Biotechnology, Ministry of Educations, School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2024-04-17

  Revised date: 2024-04-29

  Online published: 2024-08-21

摘要

发酵过程中的酸胁迫限制了工业微生物的发展,精细调控生物膜形成是提升大肠杆菌耐酸性的有效策略。研究基于EL222蓝光诱导蛋白开发了具有8.6倍调控效率的双质粒调控系统,用于调节生物膜形成关键因子CsgD和二鸟苷酸环化酶M(diguanylate cyclase,DgcM)的表达。结果表明,在pH 5.0和15 mW/cm2蓝光照射条件下,CsgD和DgcM过表达菌株耐酸性分别提高了22.3%和16.4%,生物膜含量分别增加了2.7倍和3.4倍。生物膜组成分析显示,酸性环境下多糖和蛋白质的增加以及可溶性微生物代谢产物的减少促进了细菌聚集,有助于形成更稳定的生物膜结构。实时荧光定量逆转录PCR结果证实生物膜形成相关基因转录水平显著提升。本研究构建的蓝光调控系统通过调控生物膜形成关键基因成功提高了大肠杆菌的耐酸性,这将为微生物的有机酸发酵提供参考和借鉴。

本文引用格式

吴建菊 , 冯守帅 . 蓝光调控生物膜关键基因提高大肠杆菌耐酸性[J]. 食品与发酵工业, 2024 , 50(15) : 1 -7 . DOI: 10.13995/j.cnki.11-1802/ts.039589

Abstract

Acidic stress has limited the development of industrial microorganisms during the fermentation process.Fine regulation of biofilm formation is an effective strategy to improve the acid tolerance of Escherichia coli.A dual-plasmid regulatory system based on the EL222 blue light-inducible protein was successfully constructed with an 8.6-fold increase in regulatory efficiency.This dual-plasmid expression system was further used to regulate the expressions of a biofilm formation key regulatory factor CsgD and diguanylate cyclase M (DgcM) proteins.The results indicated that the acid resistance of CsgD and DgcM overexpressed strains was improved by 22.3% and 16.4% under conditions of pH 5.0 and 15 mW/cm2 blue light irradiation.Moreover, the biofilm content was increased by 2.7 and 3.4 times, respectively.The analysis of biofilm composition revealed that the level of polysaccharides and proteins increased, while the soluble microbial products decreased under acid stress.These changes promoted bacterial aggregation, contributing to the formation of a more stable biofilm structure.Quantitative reverse transcription PCR (RT-qPCR) results further showed a significant upregulation in the transcription levels of biofilm formation-related genes.This blue light-regulated system successfully improved the acid resistance of E.coli by controlling key genes for biofilm formation, which will offer potential references and guidance for microbial organic acid fermentation.

参考文献

[1] GUAN N Z, LI J H, SHIN H D, et al.Microbial response to environmental stresses:From fundamental mechanisms to practical applications[J].Applied Microbiology and Biotechnology, 2017, 101(10):3991-4008.
[2] HALL-STOODLEY L, COSTERTON J W, STOODLEY P.Bacterial biofilms:From the natural environment to infectious diseases[J].Nature Reviews.Microbiology, 2004, 2(2):95-108.
[3] SARENKO O, KLAUCK G, WILKE F M, et al.More than enzymes that make or break cyclic di-GMP-local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli[J].mBio, 2017, 8(5):e01639-17.
[4] LINDENBERG S, KLAUCK G, PESAVENTO C, et al.The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E.coli biofilm control[J].The EMBO Journal, 2013, 32(14):2001-2014.
[5] FANG X, GOMELSKY M.A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility[J].Molecular Microbiology, 2010, 76(5):1295-1305.
[6] BROMBACHER E, BARATTO A, DOREL C, et al.Gene expression regulation by the Curli activator CsgD protein:Modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion[J].Journal of Bacteriology, 2006, 188(6):2027-2037.
[7] TAN P, HE L, HUANG Y, et al.Optophysiology:Illuminating cell physiology with optogenetics[J].Physiological Reviews, 2022, 102(3):1263-1325.
[8] LEVSKAYA A, CHEVALIER A A, TABOR J J, et al.Synthetic biology:Engineering Escherichia coli to see light[J].Nature, 2005, 438(7067):441-442.
[9] WANG X, CHEN X J, YANG Y.Spatiotemporal control of gene expression by a light-switchable transgene system[J].Nature Methods, 2012, 9(3):266-269.
[10] PU L, YANG S, XIA A G, et al.Optogenetics manipulation enables prevention of biofilm formation of engineered Pseudomonas aeruginosa on surfaces[J].ACS Synthetic Biology, 2018, 7(1):200-208.
[11] JAYARAMAN P, DEVARAJAN K, CHUA T K, et al.Blue light-mediated transcriptional activation and repression of gene expression in bacteria[J].Nucleic Acids Research, 2016, 44(14):6994-7005.
[12] KIM M J, LIM E S, KIM J S.Enzymatic inactivation of pathogenic and nonpathogenic bacteria in biofilms in combination with chlorine[J].Journal of Food Protection, 2019, 82(4):605-614.
[13] DUBOIS M, GILLES K A, HAMILTON J K, et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry, 1956, 28(3):350-356.
[14] JONES E R, VAN VLIET M T H, QADIR M, et al.Country-level and gridded estimates of wastewater production, collection, treatment and reuse[J].Earth System Science Data, 2021, 13(2):237-254.
[15] DAI T H, GUPTA A, MURRAY C K, et al.Blue light for infectious diseases:Propionibacterium acnes, Helicobacter pylori, and beyond?[J].Drug Resistance Updates, 2012, 15(4):223-236.
[16] XU Y, ZHAO Z, TONG W H, et al.An acid-tolerance response system protecting exponentially growing Escherichia coli[J].Nature Communications, 2020, 11(1):1496.
[17] HU W B, TONG Y J, LIU J J, et al.Improving acid resistance of Escherichia coli base on the CfaS-mediated membrane engineering strategy derived from extreme acidophile[J].Frontiers in Bioengineering and Biotechnology, 2023, 11:1158931.
[18] PFIFFER V, SARENKO O, POSSLING A, et al.Genetic dissection of Escherichia coli’s master diguanylate cyclase DgcE:Role of the N-terminal MASE1 domain and direct signal input from a GTPase partner system[J].PLoS Genetics, 2019, 15(4):e1008059.
[19] 吕菁萍, 李泽龙, 张鹤睿, 等.海洋假交替单胞菌生物膜产ROS特性研究[J].大连理工大学学报, 2021, 61(6):569-575.
LYU J P, LI Z L, ZHANG H R, et al.Study of ROS production characteristics of biofilm by marine Pseudoalteromonas sp[J].Journal of Dalian University of Technology, 2021, 61(6):569-575.
[20] HSUEH Y H, SOMERS E B, WONG A C.Characterization of the CodY gene and its influence on biofilm formation in Bacillus cereus[J].Archives of Microbiology, 2008, 189(6):557-568.
[21] KUNACHEVA C, STUCKEY D C.Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems:A review[J].Water Research, 2014, 61:1-18.
[22] SERRA D O, RICHTER A M, HENGGE R.Cellulose as an architectural element in spatially structured Escherichia coli biofilms[J].Journal of Bacteriology, 2013, 195(24):5540-5554.
[23] 张爱静, 李琳琼, 王鹏杰等. 热胁迫对大肠杆菌细胞膜和膜蛋白的影响[J]. 中国农业科学, 2020, 53(5): 1046-1057.
ZHANG A J, LI L Q, WANG P J, et al. Effects of heat stress on cell membrane and membrane protein of Escherichia coli[J]. Journal of Integrative Agriculture, 2020, 53(5): 1046-1057.
[24] WANG S Y, FLEMING R T, WESTBROOK E M, et al.Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription[J].Journal of Molecular Biology, 2006, 355(4):798-808.
[25] TEPLITSKI M, AL-AGELY A, AHMER B M M.Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium[J].Microbiology, 2006, 152(11):3411-3424.
[26] WEBER H, PESAVENTO C, POSSLING A, et al.Cyclic-di-GMP-mediated signalling within the σ network of Escherichia coli[J].Molecular Microbiology, 2006, 62(4):1014-1034.
[27] MORGAN J L W, STRUMILLO J, ZIMMER J.Crystallographic snapshot of cellulose synthesis and membrane translocation[J].Nature, 2013, 493(7431):181-192.
文章导航

/