[1] HAVELAAR A H, KIRK M D, TORGERSON P R, et al.World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010[J].PLoS Medicine, 2015, 12(12):e1001923.
[2] DOS SANTOS A M P, FERRARI R G, CONTE-JUNIOR C A.Virulence factors in Salmonella typhimurium:The sagacity of a bacterium[J].Current Microbiology, 2019, 76(6):762-773.
[3] MAJOWICZ S E, MUSTO J, SCALLAN E, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 2010, 50(6):882-889.
[4] KIRK M D, PIRES S M, BLACK R E, et al.World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010:A data synthesis[J].PLoS Medicine, 2015, 12(12):e1001921.
[5] BRANCHU P, BAWN M, KINGSLEY R A.Genome variation and molecular epidemiology of Salmonella enterica serovar Typhimurium pathovariants[J].Infection and Immunity, 2018, 86(8):e00079-e00018.
[6] GILCHRIST J J, MACLENNAN C A.Invasive nontyphoidal Salmonella disease in Africa[J].EcoSal Plus, 2019, 8(2):ecosalplus.ESP-0007-2018.
[7] UCHE I V, MACLENNAN C A, SAUL A.A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014)[J].PLoS Neglected Tropical Diseases, 2017, 11(1):e0005118.
[8] HE Y, WANG J K, ZHANG R H, et al.Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021[J].Frontiers in Public Health, 2023, 11:1127925.
[9] CHEN H Y, QIU H H, ZHONG H, et al.Non-typhoidal Salmonella infections among children in Fuzhou, Fujian, China:A 10-year retrospective review from 2012 to 2021[J].Infection and Drug Resistance, 2023, Volume 16:2737-2749.
[10] GAL-MOR O, BOYLE E C, GRASSL G A.Same species, different diseases:How and why typhoidal and non-typhoidal Salmonella enterica serovars differ[J].Frontiers in Microbiology, 2014, 5:391.
[11] FERRARI R G, ROSARIO D K A, CUNHA-NETO A, et al. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Applied and Environmental Microbiology, 2019, 85(14): e00591-e00519.
[12] PARISI A, CRUMP J A, STAFFORD R, et al.Increasing incidence of invasive nontyphoidal Salmonella infections in Queensland, Australia, 2007-2016[J].PLoS Neglected Tropical Diseases, 2019, 13(3):e0007187.
[13] FORD L, GLASS K, VEITCH M, et al.Increasing incidence of Salmonella in Australia, 2000-2013[J].PLoS One, 2016, 11(10):e0163989.
[14] JACOB J J, SOLAIMALAI D, RACHEL T, et al.A secular trend in invasive non-typhoidal Salmonella in South India, 2000-2020:Identification challenges and antibiogram[J].Indian Journal of Medical Microbiology, 2022, 40(4):536-540.
[15] BASSAL R, DAVIDOVICH-COHEN M, YAKUNIN E, et al.Trends in the epidemiology of non-typhoidal Salmonellosis in Israel between 2010 and 2021[J].International Journal of Environmental Research and Public Health, 2023, 20(9):5626.
[16] WILSON C N, CHUNGA A, MASESA C, et al.Incidence of invasive non-typhoidal Salmonella in Blantyre, Malawi between January 2011-December 2019[J].Wellcome Open Research, 2022, 7:143.
[17] CRUMP J A, SJÖLUND-KARLSSON M, GORDON M A, et al.Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections[J].Clinical Microbiology Reviews, 2015, 28(4):901-937.
[18] SRIKANTH C V, MERCADO-LUBO R, HALLSTROM K, et al.Salmonella effector proteins and host-cell responses[J].Cellular and Molecular Life Sciences: CMLS, 2011, 68(22):3687-3697.
[19] 赵泽慧, 李强, 何小丽, 等.鼠伤寒沙门氏菌致病机理的研究进展[J].黑龙江畜牧兽医, 2017(5):71-75.
ZHAO Z H, LI Q, HE X L, et al.Research progress on pathogenic mechanism of Salmonella typhimurium[J].Heilongjiang Animal Science and Veterinary Medicine, 2017(5):71-75.
[20] BROZ P, OHLSON M B, MONACK D M.Innate immune response to Salmonella typhimurium, a model enteric pathogen[J].Gut Microbes, 2012, 3(2):62-70.
[21] VAZQUEZ-TORRES A, JONES-CARSON J, BÄUMLER A J, et al.Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes[J].Nature, 1999, 401(6755):804-808.
[22] NIESS J H, BRAND S, GU X B, et al.CX3 CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance[J].Science, 2005, 307(5707):254-258.
[23] AZIMI T, ZAMIRNASTA M, SANI M A, et al.Molecular mechanisms of Salmonella effector proteins:A comprehensive review[J].Infection and Drug Resistance, 2020,13:11-26.
[24] 战仁慧, 张建.Toll样受体在伤寒沙门氏菌感染过程中的作用机制[J].中国免疫学杂志, 2013, 29(10):1098-1102.
ZHAN R H, ZHANG J.Mechanism of toll-like receptor in Salmonella typhoid infection[J].Chinese Journal of Immunology, 2013, 29(10):1098-1102.
[25] LI W W, LI L X, YAN X L, et al.Nitrate utilization promotes systemic infection of Salmonella typhimurium in mice[J].International Journal of Molecular Sciences, 2022, 23(13):7220.
[26] BADER M W, NAVARRE W W, SHIAU W, et al.Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides[J].Molecular Microbiology, 2003, 50(1):219-230.
[27] TAYLOR S J, WINTER S E.Salmonella finds a way:Metabolic versatility of Salmonella enterica serovar Typhimurium in diverse host environments[J].PLoS Pathogens, 2020, 16(6):e1008540.
[28] GANGATHRAPRABHU B, KANNAN S, SANTHANAM G, et al.A review on the origin of multidrug-resistant Salmonella and perspective of tailored phoP gene towards avirulence[J].Microbial Pathogenesis, 2020, 147:104352.
[29] ZAFAR M, JAHAN H, SHAFEEQ S, et al.Clarithromycin exerts an antibiofilm effect against Salmonella typhimurium rdar biofilm formation and transforms the physiology towards an apparent oxygen-depleted energy and carbon metabolism[J].Infection and Immunity, 2020, 88(11):e00510-e00520.
[30] ZHANG C Z, REN S Q, CHANG M X, et al.Resistance mechanisms and fitness of Salmonella typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro[J].Scientific Reports, 2017, 7(1):9113.
[31] BAUCHERON S, TYLER S, BOYD D, et al.AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104[J].Antimicrobial Agents and Chemotherapy, 2004, 48(10):3729-3735.
[32] WEI Z, XU X B, YAN M Y, et al.Salmonella typhimurium and Salmonella enteritidis infections in sporadic diarrhea in children:Source tracing and resistance to third-generation cephalosporins and ciprofloxacin[J].Foodborne Pathogens and Disease, 2019, 16(4):244-255.
[33] TACK B, PHOBA M F, BARBÉ B, et al.Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo:Emergence of O5-negative Salmonella typhimurium and extensive drug resistance[J].PLoS Neglected Tropical Diseases, 2020, 14(4):e0008121.
[34] DIARD M, SELLIN M E, DOLOWSCHIAK T, et al.Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium[J].Current Biology: CB, 2014, 24(17):2000-2005.
[35] NEWSON J P, GAISSMAIER M S, MCHUGH S C, et al.Studying antibiotic persistence in vivo using the model organism Salmonella typhimurium[J].Current Opinion in Microbiology, 2022, 70:102224.
[36] DAWAN J, UDDIN M J, AHN J.Development of de novo resistance in Salmonella typhimurium treated with antibiotic combinations[J].FEMS Microbiology Letters, 2019, 366(10):fnz127.
[37] DAWAN J, AHN J.Effectiveness of antibiotic combination treatments to control heteroresistant Salmonella typhimurium[J].Microbial Drug Resistance, 2021, 27(4):441-449.
[38] ULANOWSKA M, OLAS B.Biological properties and prospects for the application of Eugenol-a review[J].International Journal of Molecular Sciences, 2021, 22(7):3671.
[39] ZHAO X, WEI S M, TIAN Q M, et al.Eugenol exposure in vitro inhibits the expressions of T3SS and TIF virulence genes in Salmonella typhimurium and reduces its pathogenicity to chickens[J].Microbial Pathogenesis, 2022, 162:105314.
[40] ZHAO X, ZHENG S M, WEI S M, et al.The protective effect and potential mechanisms of eugenol against Salmonella in vivo and in vitro[J].Poultry Science, 2022, 101(5):101801.
[41] MARCHESE A, ORHAN I E, DAGLIA M, et al.Antibacterial and antifungal activities of thymol:A brief review of the literature[J].Food Chemistry, 2016, 210:402-414.
[42] ZHANG Y, LIU Y, QIU J Z, et al.The herbal compound thymol protects mice from lethal infection by Salmonella typhimurium[J].Frontiers in Microbiology, 2018, 9:1022.
[43] ZHANG Y, LIU Y, LUO J J, et al.The herbal compound thymol targets multiple Salmonella typhimurium virulence factors for lon protease degradation[J].Frontiers in Pharmacology, 2021, 12:674955.
[44] GIOVAGNONI G, ROSSI B, TUGNOLI B, et al.Thymol and carvacrol downregulate the expression of Salmonella typhimurium virulence genes during an in vitro infection on Caco-2 cells[J].Microorganisms, 2020, 8(6):862.
[45] LIU Y, ZHANG Y, ZHOU Y L, et al.Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins[J].Veterinary Microbiology, 2019, 239:108463.
[46] LV Q H, LI S F, WEI H L, et al.Identification of the natural product paeonol derived from peony bark as an inhibitor of the Salmonella enterica serovar Typhimurium type Ⅲ secretion system[J].Applied Microbiology and Biotechnology, 2020, 104(4):1673-1682.
[47] LV Q H, CHU X, YAO X Y, et al.Inhibition of the type Ⅲ secretion system by syringaldehyde protects mice from Salmonella enterica serovar Typhimurium[J].Journal of Cellular and Molecular Medicine, 2019, 23(7):4679-4688.
[48] LYU Q H, LV Y Z, DOU X Y, et al.Myricetin inhibits the type Ⅲ secretion system of Salmonella enterica serovar typhimurium by downregulating the Salmonella pathogenic island Ⅰ gene regulatory pathway[J].Microbial Pathogenesis, 2021, 150:104695.
[49] GUO Z X, LI X L, LI J F, et al.Licoflavonol is an inhibitor of the type three secretion system of Salmonella enterica serovar Typhimurium[J].Biochemical and Biophysical Research Communications, 2016, 477(4):998-1004.
[50] SHI Y J, CHEN X D, SHU J Y, et al.Harmine, an inhibitor of the type Ⅲ secretion system of Salmonella enterica serovar Typhimurium[J].Frontiers in Cellular and Infection Microbiology, 2022, 12:967149.
[51] VIKRAM A, JESUDHASAN P R, JAYAPRAKASHA G K, et al.Citrus flavonoid represses Salmonella pathogenicity island 1 and motility in S.typhimurium LT2[J].International Journal of Food Microbiology, 2011, 145(1):28-36.
[52] LI Q J, WANG L P, XU J W, et al.Quercitrin is a novel inhibitor of Salmonella enterica serovar typhimurium type Ⅲ secretion system[J].Molecules, 2023, 28(14):5455.
[53] HEGAZY W A H, SALEM I M, ALOTAIBI H F, et al.Terazosin interferes with quorum sensing and type three secretion system and diminishes the bacterial espionage to mitigate the Salmonella typhimurium pathogenesis[J].Antibiotics, 2022, 11(4):465.
[54] HUSSAIN S, OUYANG P, ZHU Y K, et al.Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors:A novel strategy to combat salmonellosis[J].Environmental Science and Pollution Research International, 2021, 28(26):34154-34166.
[55] CHIU H C, KULP S K, SONI S, et al.Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent[J].Antimicrobial Agents and Chemotherapy, 2009, 53(12):5236-5244.
[56] AMMANATHAN V, MISHRA P, CHAVALMANE A K, et al.Restriction of intracellular Salmonella replication by restoring TFEB-mediated xenophagy[J].Autophagy, 2020, 16(9):1584-1597.
[57] ZHANG L, SUN Y, XU W, et al.Baicalin inhibits Salmonella typhimurium-induced inflammation and mediates-autophagy through TLR4/MAPK/NF-κB signalling pathway[J].Basic & Clinical Pharmacology & Toxicology, 2021, 128(2):241-255.
[58] AL AZZAZ J, RIEU A, AIRES V, et al.Resveratrol-induced xenophagy promotes intracellular bacteria clearance in intestinal epithelial cells and macrophages[J].Frontiers in Immunology, 2019, 9:3149.
[59] ZGURSKAYA H I, RYBENKOV V V.Permeability barriers of Gram-negative pathogens[J].Annals of the New York Academy of Sciences, 2020, 1459(1):5-18.
[60] JOLIVET-GOUGEON A, BONNAURE-MALLET M.Biofilms as a mechanism of bacterial resistance[J].Drug Discovery Today:Technologies, 2014, 11:49-56.
[61] VAN ACKER H, VAN DIJCK P, COENYE T.Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms[J].Trends in Microbiology, 2014, 22(6):326-333.
[62] HARRELL J E, HAHN M M, D’SOUZA S J, et al.Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract[J].Frontiers in Cellular and Infection Microbiology, 2021, 10:624622.
[63] MOSHIRI J, KAUR D, HAMBIRA C M, et al.Identification of a small molecule anti-biofilm agent against Salmonella enterica[J].Frontiers in Microbiology, 2018, 9:2804.
[64] DOMBACH J L, QUINTANA J L J, NAGY T A, et al.A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids[J].PLoS Pathogens, 2020, 16(12):e1009119.
[65] VILLANUEVA J A, CROOKS A L, NAGY T A, et al.Salmonella enterica infections are disrupted by two small molecules that accumulate within phagosomes and differentially damage bacterial inner membranes[J].mBio, 2022, 13(5):e0179022.
[66] GAO Y Z, CHEN H L, LI W, et al.Chloroform extracts of Atractylodes chinensis inhibit the adhesion and invasion of Salmonella typhimurium[J].Biomedicine & Pharmacotherapy, 2022, 154:113633.
[67] HUANG C X, SHI J C, MA W J, et al.Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices[J].Food Research International, 2018, 111:631-641.
[68] LAURE N N, AHN J.Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella typhimurium[J].Microbial Pathogenesis, 2022, 171:105732.
[69] STRATHDEE S A, HATFULL G F, MUTALIK V K, et al.Phage therapy:From biological mechanisms to future directions[J].Cell, 2023, 186(1):17-31.
[70] JUNG L S, DING T, AHN J.Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella typhimurium[J].Annals of Clinical Microbiology and Antimicrobials, 2017, 16(1):66.
[71] KOSZNIK-KWAŚNICKA K, STASIŁOJĆ M, GRABOWSKI Ł, et al.Efficacy and safety of phage therapy against Salmonella enterica serovars Typhimurium and Enteritidis estimated by using a battery of in vitro tests and the Galleria mellonella animal model[J].Microbiological Research, 2022, 261:127052.
[72] LIANG L, HUANG J Q, CUI K J, et al.A combination of virulent and non-productive phages synergizes the immune system against Salmonella typhimurium systemic infection[J].International Journal of Molecular Sciences, 2022, 23(21):12830.
[73] LU M, LIU B X, XIONG W B, et al.The combination of Salmonella phage ST-3 and antibiotics to prevent Salmonella typhimurium in vitro[J].Current Microbiology, 2022, 79(12):371.
[74] LOC-CARRILLO C, ABEDON S T.Pros and cons of phage therapy[J].Bacteriophage, 2011, 1(2):111-114.
[75] TENNANT S M, LEVINE M M.Live attenuated vaccines for invasive Salmonella infections[J].Vaccine, 2015, 33:C36-C41.
[76] TENNANT S M, WANG J Y, GALEN J E, et al.Engineering and preclinical evaluation of attenuated nontyphoidal Salmonella strains serving as live oral vaccines and as reagent strains[J].Infection and Immunity, 2011, 79(10):4175-4185.
[77] AULT A, TENNANT S M, GORRES J P, et al.Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates[J].Vaccine, 2013, 31(49):5879-5888.
[78] DIPETRILLO M D, TIBBETTS T, KLEANTHOUS H, et al. Safety and immunogenicity of phoP/phoQ-deleted Salmonella typhi expressing Helicobacter pylori urease in adult volunteers. Vaccine, 1999, 18(5-6):449-459.
[79] ANGELAKOPOULOS H, HOHMANN E L.Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers[J].Infection and Immunity, 2000, 68(4):2135-2141.
[80] HINDLE Z, CHATFIELD S N, PHILLIMORE J, et al.Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type Ⅲ secretion system (ssaV) mutations by immunization of healthy volunteers[J].Infection and Immunity, 2002, 70(7):3457-3467.
[81] GALEN J E, BUSKIRK A D, TENNANT S M, et al. Live attenuated human Salmonella vaccine candidates: Tracking the pathogen in natural infection and stimulation of host immunity. EcoSal Plus, 2016, 7(1):10.1128/ecosalplus.ESP-10.1128/ecosalplus0010-2016.
[82] TENNANT S M, MACLENNAN C A, SIMON R, et al.Nontyphoidal Salmonella disease:Current status of vaccine research and development[J].Vaccine, 2016, 34(26):2907-2910.
[83] ELLIS T N, KUEHN M J.Virulence and immunomodulatory roles of bacterial outer membrane vesicles[J].Microbiology and Molecular Biology Reviews: MMBR, 2010, 74(1):81-94.
[84] DE BENEDETTO G, ALFINI R, CESCUTTI P, et al.Characterization of O-antigen delivered by generalized modules for membrane antigens (GMMA) vaccine candidates against nontyphoidal Salmonella[J].Vaccine, 2017, 35(3):419-426.
[85] EL-SHARKAWY H, TAHOUN A, RIZK A M, et al.Evaluation of bifidobacteria and Lactobacillus probiotics as alternative therapy for Salmonella typhimurium infection in broiler chickens[J].Animals: an Open Access Journal from MDPI, 2020, 10(6):1023.
[86] PRADHAN B, GUHA D, NAIK A K, et al.Probiotics L.acidophilus and B.clausii modulate gut microbiota in Th1- and Th2-biased mice to ameliorate Salmonella typhimurium-induced diarrhea[J].Probiotics and Antimicrobial Proteins, 2019, 11(3):887-904.