综述与专题评论

鼠伤寒沙门氏菌的感染及治疗研究进展

  • 吴昊 ,
  • 胡丽颖 ,
  • 路娟娥
展开
  • 1(天津大学 生命科学学院,天津,300072)
    2(天津大学浙江研究院(绍兴),浙江 绍兴,312300)
    3(天津大学 化工学院,天津,300350)
第一作者:博士,中级工程师(通信作者,Email:dream72wh@tju.edu.cn)

收稿日期: 2023-10-12

  修回日期: 2023-11-17

  网络出版日期: 2024-09-19

基金资助

国家重点研发计划项目(2023YFC3402401)

Research progress on infection and treatment of Salmonella typhimurium

  • WU Hao ,
  • HU Liying ,
  • LU Juane
Expand
  • 1(School of Life Sciences, Tianjin University, Tianjin 300072, China)
    2(Zhejiang Institute of Tianjin University, Shaoxing 312300, China)
    3(School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China)

Received date: 2023-10-12

  Revised date: 2023-11-17

  Online published: 2024-09-19

摘要

鼠伤寒沙门氏菌是一种食源性致病菌,严重威胁畜禽养殖业和人类公共卫生安全。其依靠自身致病性岛和Ⅲ型分泌系统,能够在宿主体内存活、繁殖和扩散,从而引发全身感染。传统治疗鼠伤寒沙门氏菌感染的方法是使用抗生素,但多药耐药菌株的出现给其治疗带来了巨大的挑战,因此迫切需要开发新的治疗方法。近年来,小分子疗法、噬菌体疗法、减毒疫苗疗法等逐渐兴起,有望成为治疗感染的有效方法。该文旨在对鼠伤寒沙门氏菌的感染及其治疗措施进行综述。

本文引用格式

吴昊 , 胡丽颖 , 路娟娥 . 鼠伤寒沙门氏菌的感染及治疗研究进展[J]. 食品与发酵工业, 2024 , 50(16) : 359 -366 . DOI: 10.13995/j.cnki.11-1802/ts.037634

Abstract

Salmonella typhimurium is a foodborne pathogen that poses a serious threat to livestock, poultry farming, and human public health safety.It relies on its pathogenicity islands and type Ⅲ secretion system to survive, multiply, and spread within the hosts, leading to systemic infection.The traditional treatment for S.typhimurium infection is the use of antibiotics.However, the emergence of multidrug-resistant strains presents a significant challenge to this approach, which urgently requires the development of new treatment methods.In recent years, small molecule therapy, phage therapy, and attenuated vaccine therapy have gradually emerged and are expected to become effective methods for treating infections.The article aims to review the infection of S.typhimurium and its treatment measures.

参考文献

[1] HAVELAAR A H, KIRK M D, TORGERSON P R, et al.World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010[J].PLoS Medicine, 2015, 12(12):e1001923.
[2] DOS SANTOS A M P, FERRARI R G, CONTE-JUNIOR C A.Virulence factors in Salmonella typhimurium:The sagacity of a bacterium[J].Current Microbiology, 2019, 76(6):762-773.
[3] MAJOWICZ S E, MUSTO J, SCALLAN E, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 2010, 50(6):882-889.
[4] KIRK M D, PIRES S M, BLACK R E, et al.World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010:A data synthesis[J].PLoS Medicine, 2015, 12(12):e1001921.
[5] BRANCHU P, BAWN M, KINGSLEY R A.Genome variation and molecular epidemiology of Salmonella enterica serovar Typhimurium pathovariants[J].Infection and Immunity, 2018, 86(8):e00079-e00018.
[6] GILCHRIST J J, MACLENNAN C A.Invasive nontyphoidal Salmonella disease in Africa[J].EcoSal Plus, 2019, 8(2):ecosalplus.ESP-0007-2018.
[7] UCHE I V, MACLENNAN C A, SAUL A.A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014)[J].PLoS Neglected Tropical Diseases, 2017, 11(1):e0005118.
[8] HE Y, WANG J K, ZHANG R H, et al.Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021[J].Frontiers in Public Health, 2023, 11:1127925.
[9] CHEN H Y, QIU H H, ZHONG H, et al.Non-typhoidal Salmonella infections among children in Fuzhou, Fujian, China:A 10-year retrospective review from 2012 to 2021[J].Infection and Drug Resistance, 2023, Volume 16:2737-2749.
[10] GAL-MOR O, BOYLE E C, GRASSL G A.Same species, different diseases:How and why typhoidal and non-typhoidal Salmonella enterica serovars differ[J].Frontiers in Microbiology, 2014, 5:391.
[11] FERRARI R G, ROSARIO D K A, CUNHA-NETO A, et al. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Applied and Environmental Microbiology, 2019, 85(14): e00591-e00519.
[12] PARISI A, CRUMP J A, STAFFORD R, et al.Increasing incidence of invasive nontyphoidal Salmonella infections in Queensland, Australia, 2007-2016[J].PLoS Neglected Tropical Diseases, 2019, 13(3):e0007187.
[13] FORD L, GLASS K, VEITCH M, et al.Increasing incidence of Salmonella in Australia, 2000-2013[J].PLoS One, 2016, 11(10):e0163989.
[14] JACOB J J, SOLAIMALAI D, RACHEL T, et al.A secular trend in invasive non-typhoidal Salmonella in South India, 2000-2020:Identification challenges and antibiogram[J].Indian Journal of Medical Microbiology, 2022, 40(4):536-540.
[15] BASSAL R, DAVIDOVICH-COHEN M, YAKUNIN E, et al.Trends in the epidemiology of non-typhoidal Salmonellosis in Israel between 2010 and 2021[J].International Journal of Environmental Research and Public Health, 2023, 20(9):5626.
[16] WILSON C N, CHUNGA A, MASESA C, et al.Incidence of invasive non-typhoidal Salmonella in Blantyre, Malawi between January 2011-December 2019[J].Wellcome Open Research, 2022, 7:143.
[17] CRUMP J A, SJÖLUND-KARLSSON M, GORDON M A, et al.Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections[J].Clinical Microbiology Reviews, 2015, 28(4):901-937.
[18] SRIKANTH C V, MERCADO-LUBO R, HALLSTROM K, et al.Salmonella effector proteins and host-cell responses[J].Cellular and Molecular Life Sciences: CMLS, 2011, 68(22):3687-3697.
[19] 赵泽慧, 李强, 何小丽, 等.鼠伤寒沙门氏菌致病机理的研究进展[J].黑龙江畜牧兽医, 2017(5):71-75.
ZHAO Z H, LI Q, HE X L, et al.Research progress on pathogenic mechanism of Salmonella typhimurium[J].Heilongjiang Animal Science and Veterinary Medicine, 2017(5):71-75.
[20] BROZ P, OHLSON M B, MONACK D M.Innate immune response to Salmonella typhimurium, a model enteric pathogen[J].Gut Microbes, 2012, 3(2):62-70.
[21] VAZQUEZ-TORRES A, JONES-CARSON J, BÄUMLER A J, et al.Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes[J].Nature, 1999, 401(6755):804-808.
[22] NIESS J H, BRAND S, GU X B, et al.CX3 CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance[J].Science, 2005, 307(5707):254-258.
[23] AZIMI T, ZAMIRNASTA M, SANI M A, et al.Molecular mechanisms of Salmonella effector proteins:A comprehensive review[J].Infection and Drug Resistance, 2020,13:11-26.
[24] 战仁慧, 张建.Toll样受体在伤寒沙门氏菌感染过程中的作用机制[J].中国免疫学杂志, 2013, 29(10):1098-1102.
ZHAN R H, ZHANG J.Mechanism of toll-like receptor in Salmonella typhoid infection[J].Chinese Journal of Immunology, 2013, 29(10):1098-1102.
[25] LI W W, LI L X, YAN X L, et al.Nitrate utilization promotes systemic infection of Salmonella typhimurium in mice[J].International Journal of Molecular Sciences, 2022, 23(13):7220.
[26] BADER M W, NAVARRE W W, SHIAU W, et al.Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides[J].Molecular Microbiology, 2003, 50(1):219-230.
[27] TAYLOR S J, WINTER S E.Salmonella finds a way:Metabolic versatility of Salmonella enterica serovar Typhimurium in diverse host environments[J].PLoS Pathogens, 2020, 16(6):e1008540.
[28] GANGATHRAPRABHU B, KANNAN S, SANTHANAM G, et al.A review on the origin of multidrug-resistant Salmonella and perspective of tailored phoP gene towards avirulence[J].Microbial Pathogenesis, 2020, 147:104352.
[29] ZAFAR M, JAHAN H, SHAFEEQ S, et al.Clarithromycin exerts an antibiofilm effect against Salmonella typhimurium rdar biofilm formation and transforms the physiology towards an apparent oxygen-depleted energy and carbon metabolism[J].Infection and Immunity, 2020, 88(11):e00510-e00520.
[30] ZHANG C Z, REN S Q, CHANG M X, et al.Resistance mechanisms and fitness of Salmonella typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro[J].Scientific Reports, 2017, 7(1):9113.
[31] BAUCHERON S, TYLER S, BOYD D, et al.AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104[J].Antimicrobial Agents and Chemotherapy, 2004, 48(10):3729-3735.
[32] WEI Z, XU X B, YAN M Y, et al.Salmonella typhimurium and Salmonella enteritidis infections in sporadic diarrhea in children:Source tracing and resistance to third-generation cephalosporins and ciprofloxacin[J].Foodborne Pathogens and Disease, 2019, 16(4):244-255.
[33] TACK B, PHOBA M F, BARBÉ B, et al.Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo:Emergence of O5-negative Salmonella typhimurium and extensive drug resistance[J].PLoS Neglected Tropical Diseases, 2020, 14(4):e0008121.
[34] DIARD M, SELLIN M E, DOLOWSCHIAK T, et al.Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium[J].Current Biology: CB, 2014, 24(17):2000-2005.
[35] NEWSON J P, GAISSMAIER M S, MCHUGH S C, et al.Studying antibiotic persistence in vivo using the model organism Salmonella typhimurium[J].Current Opinion in Microbiology, 2022, 70:102224.
[36] DAWAN J, UDDIN M J, AHN J.Development of de novo resistance in Salmonella typhimurium treated with antibiotic combinations[J].FEMS Microbiology Letters, 2019, 366(10):fnz127.
[37] DAWAN J, AHN J.Effectiveness of antibiotic combination treatments to control heteroresistant Salmonella typhimurium[J].Microbial Drug Resistance, 2021, 27(4):441-449.
[38] ULANOWSKA M, OLAS B.Biological properties and prospects for the application of Eugenol-a review[J].International Journal of Molecular Sciences, 2021, 22(7):3671.
[39] ZHAO X, WEI S M, TIAN Q M, et al.Eugenol exposure in vitro inhibits the expressions of T3SS and TIF virulence genes in Salmonella typhimurium and reduces its pathogenicity to chickens[J].Microbial Pathogenesis, 2022, 162:105314.
[40] ZHAO X, ZHENG S M, WEI S M, et al.The protective effect and potential mechanisms of eugenol against Salmonella in vivo and in vitro[J].Poultry Science, 2022, 101(5):101801.
[41] MARCHESE A, ORHAN I E, DAGLIA M, et al.Antibacterial and antifungal activities of thymol:A brief review of the literature[J].Food Chemistry, 2016, 210:402-414.
[42] ZHANG Y, LIU Y, QIU J Z, et al.The herbal compound thymol protects mice from lethal infection by Salmonella typhimurium[J].Frontiers in Microbiology, 2018, 9:1022.
[43] ZHANG Y, LIU Y, LUO J J, et al.The herbal compound thymol targets multiple Salmonella typhimurium virulence factors for lon protease degradation[J].Frontiers in Pharmacology, 2021, 12:674955.
[44] GIOVAGNONI G, ROSSI B, TUGNOLI B, et al.Thymol and carvacrol downregulate the expression of Salmonella typhimurium virulence genes during an in vitro infection on Caco-2 cells[J].Microorganisms, 2020, 8(6):862.
[45] LIU Y, ZHANG Y, ZHOU Y L, et al.Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins[J].Veterinary Microbiology, 2019, 239:108463.
[46] LV Q H, LI S F, WEI H L, et al.Identification of the natural product paeonol derived from peony bark as an inhibitor of the Salmonella enterica serovar Typhimurium type Ⅲ secretion system[J].Applied Microbiology and Biotechnology, 2020, 104(4):1673-1682.
[47] LV Q H, CHU X, YAO X Y, et al.Inhibition of the type Ⅲ secretion system by syringaldehyde protects mice from Salmonella enterica serovar Typhimurium[J].Journal of Cellular and Molecular Medicine, 2019, 23(7):4679-4688.
[48] LYU Q H, LV Y Z, DOU X Y, et al.Myricetin inhibits the type Ⅲ secretion system of Salmonella enterica serovar typhimurium by downregulating the Salmonella pathogenic island Ⅰ gene regulatory pathway[J].Microbial Pathogenesis, 2021, 150:104695.
[49] GUO Z X, LI X L, LI J F, et al.Licoflavonol is an inhibitor of the type three secretion system of Salmonella enterica serovar Typhimurium[J].Biochemical and Biophysical Research Communications, 2016, 477(4):998-1004.
[50] SHI Y J, CHEN X D, SHU J Y, et al.Harmine, an inhibitor of the type Ⅲ secretion system of Salmonella enterica serovar Typhimurium[J].Frontiers in Cellular and Infection Microbiology, 2022, 12:967149.
[51] VIKRAM A, JESUDHASAN P R, JAYAPRAKASHA G K, et al.Citrus flavonoid represses Salmonella pathogenicity island 1 and motility in S.typhimurium LT2[J].International Journal of Food Microbiology, 2011, 145(1):28-36.
[52] LI Q J, WANG L P, XU J W, et al.Quercitrin is a novel inhibitor of Salmonella enterica serovar typhimurium type Ⅲ secretion system[J].Molecules, 2023, 28(14):5455.
[53] HEGAZY W A H, SALEM I M, ALOTAIBI H F, et al.Terazosin interferes with quorum sensing and type three secretion system and diminishes the bacterial espionage to mitigate the Salmonella typhimurium pathogenesis[J].Antibiotics, 2022, 11(4):465.
[54] HUSSAIN S, OUYANG P, ZHU Y K, et al.Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors:A novel strategy to combat salmonellosis[J].Environmental Science and Pollution Research International, 2021, 28(26):34154-34166.
[55] CHIU H C, KULP S K, SONI S, et al.Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent[J].Antimicrobial Agents and Chemotherapy, 2009, 53(12):5236-5244.
[56] AMMANATHAN V, MISHRA P, CHAVALMANE A K, et al.Restriction of intracellular Salmonella replication by restoring TFEB-mediated xenophagy[J].Autophagy, 2020, 16(9):1584-1597.
[57] ZHANG L, SUN Y, XU W, et al.Baicalin inhibits Salmonella typhimurium-induced inflammation and mediates-autophagy through TLR4/MAPK/NF-κB signalling pathway[J].Basic & Clinical Pharmacology & Toxicology, 2021, 128(2):241-255.
[58] AL AZZAZ J, RIEU A, AIRES V, et al.Resveratrol-induced xenophagy promotes intracellular bacteria clearance in intestinal epithelial cells and macrophages[J].Frontiers in Immunology, 2019, 9:3149.
[59] ZGURSKAYA H I, RYBENKOV V V.Permeability barriers of Gram-negative pathogens[J].Annals of the New York Academy of Sciences, 2020, 1459(1):5-18.
[60] JOLIVET-GOUGEON A, BONNAURE-MALLET M.Biofilms as a mechanism of bacterial resistance[J].Drug Discovery Today:Technologies, 2014, 11:49-56.
[61] VAN ACKER H, VAN DIJCK P, COENYE T.Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms[J].Trends in Microbiology, 2014, 22(6):326-333.
[62] HARRELL J E, HAHN M M, D’SOUZA S J, et al.Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract[J].Frontiers in Cellular and Infection Microbiology, 2021, 10:624622.
[63] MOSHIRI J, KAUR D, HAMBIRA C M, et al.Identification of a small molecule anti-biofilm agent against Salmonella enterica[J].Frontiers in Microbiology, 2018, 9:2804.
[64] DOMBACH J L, QUINTANA J L J, NAGY T A, et al.A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids[J].PLoS Pathogens, 2020, 16(12):e1009119.
[65] VILLANUEVA J A, CROOKS A L, NAGY T A, et al.Salmonella enterica infections are disrupted by two small molecules that accumulate within phagosomes and differentially damage bacterial inner membranes[J].mBio, 2022, 13(5):e0179022.
[66] GAO Y Z, CHEN H L, LI W, et al.Chloroform extracts of Atractylodes chinensis inhibit the adhesion and invasion of Salmonella typhimurium[J].Biomedicine & Pharmacotherapy, 2022, 154:113633.
[67] HUANG C X, SHI J C, MA W J, et al.Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices[J].Food Research International, 2018, 111:631-641.
[68] LAURE N N, AHN J.Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella typhimurium[J].Microbial Pathogenesis, 2022, 171:105732.
[69] STRATHDEE S A, HATFULL G F, MUTALIK V K, et al.Phage therapy:From biological mechanisms to future directions[J].Cell, 2023, 186(1):17-31.
[70] JUNG L S, DING T, AHN J.Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella typhimurium[J].Annals of Clinical Microbiology and Antimicrobials, 2017, 16(1):66.
[71] KOSZNIK-KWAŚNICKA K, STASIŁOJĆ M, GRABOWSKI Ł, et al.Efficacy and safety of phage therapy against Salmonella enterica serovars Typhimurium and Enteritidis estimated by using a battery of in vitro tests and the Galleria mellonella animal model[J].Microbiological Research, 2022, 261:127052.
[72] LIANG L, HUANG J Q, CUI K J, et al.A combination of virulent and non-productive phages synergizes the immune system against Salmonella typhimurium systemic infection[J].International Journal of Molecular Sciences, 2022, 23(21):12830.
[73] LU M, LIU B X, XIONG W B, et al.The combination of Salmonella phage ST-3 and antibiotics to prevent Salmonella typhimurium in vitro[J].Current Microbiology, 2022, 79(12):371.
[74] LOC-CARRILLO C, ABEDON S T.Pros and cons of phage therapy[J].Bacteriophage, 2011, 1(2):111-114.
[75] TENNANT S M, LEVINE M M.Live attenuated vaccines for invasive Salmonella infections[J].Vaccine, 2015, 33:C36-C41.
[76] TENNANT S M, WANG J Y, GALEN J E, et al.Engineering and preclinical evaluation of attenuated nontyphoidal Salmonella strains serving as live oral vaccines and as reagent strains[J].Infection and Immunity, 2011, 79(10):4175-4185.
[77] AULT A, TENNANT S M, GORRES J P, et al.Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates[J].Vaccine, 2013, 31(49):5879-5888.
[78] DIPETRILLO M D, TIBBETTS T, KLEANTHOUS H, et al. Safety and immunogenicity of phoP/phoQ-deleted Salmonella typhi expressing Helicobacter pylori urease in adult volunteers. Vaccine, 1999, 18(5-6):449-459.
[79] ANGELAKOPOULOS H, HOHMANN E L.Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers[J].Infection and Immunity, 2000, 68(4):2135-2141.
[80] HINDLE Z, CHATFIELD S N, PHILLIMORE J, et al.Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type Ⅲ secretion system (ssaV) mutations by immunization of healthy volunteers[J].Infection and Immunity, 2002, 70(7):3457-3467.
[81] GALEN J E, BUSKIRK A D, TENNANT S M, et al. Live attenuated human Salmonella vaccine candidates: Tracking the pathogen in natural infection and stimulation of host immunity. EcoSal Plus, 2016, 7(1):10.1128/ecosalplus.ESP-10.1128/ecosalplus0010-2016.
[82] TENNANT S M, MACLENNAN C A, SIMON R, et al.Nontyphoidal Salmonella disease:Current status of vaccine research and development[J].Vaccine, 2016, 34(26):2907-2910.
[83] ELLIS T N, KUEHN M J.Virulence and immunomodulatory roles of bacterial outer membrane vesicles[J].Microbiology and Molecular Biology Reviews: MMBR, 2010, 74(1):81-94.
[84] DE BENEDETTO G, ALFINI R, CESCUTTI P, et al.Characterization of O-antigen delivered by generalized modules for membrane antigens (GMMA) vaccine candidates against nontyphoidal Salmonella[J].Vaccine, 2017, 35(3):419-426.
[85] EL-SHARKAWY H, TAHOUN A, RIZK A M, et al.Evaluation of bifidobacteria and Lactobacillus probiotics as alternative therapy for Salmonella typhimurium infection in broiler chickens[J].Animals: an Open Access Journal from MDPI, 2020, 10(6):1023.
[86] PRADHAN B, GUHA D, NAIK A K, et al.Probiotics L.acidophilus and B.clausii modulate gut microbiota in Th1- and Th2-biased mice to ameliorate Salmonella typhimurium-induced diarrhea[J].Probiotics and Antimicrobial Proteins, 2019, 11(3):887-904.
文章导航

/