综述与专题评论

微生物代谢工程生产L-酪氨酸研究进展

  • 杨刚 ,
  • 黄明珠 ,
  • 刘斌 ,
  • 陈雪岚
展开
  • 1(江西师范大学 生命科学学院, 国家淡水鱼加工技术研发专业中心,江西 南昌, 330027)
    2(江西师范大学 健康学院,江西 南昌, 330027)
第一作者:硕士研究生(陈雪岚教授为通信作者,E-mail:xuelanchen162@163.com)

收稿日期: 2023-12-04

  修回日期: 2024-01-08

  网络出版日期: 2024-10-14

基金资助

国家自然科学基金(32260014,31960014);江西省自然科学基金(20224BAB215004,20224BAB215005)

Advances in production of L-tyrosine through microbial metabolic engineering

  • YANG Gang ,
  • HUANG Mingzhu ,
  • LIU Bin ,
  • CHEN Xuelan
Expand
  • 1(College of Life Science and National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330027, China)
    2(Health College, Jiangxi Normal University, Nanchang 330027, China)

Received date: 2023-12-04

  Revised date: 2024-01-08

  Online published: 2024-10-14

摘要

L-酪氨酸是一种具有重要营养功能的芳香族氨基酸,在食品、饲料、医药以及化工等行业具有广泛的应用。通常生产L-酪氨酸的方法有化学合成法、水解法和代谢工程改造微生物合成法。相较于前2种方法的众多缺陷,代谢工程改造微生物合成L-酪氨酸越来越广泛被利用。该文综述了利用代谢工程改造微生物提高L-酪氨酸产量的方法,以期为相关科研者提供一定的思路。

本文引用格式

杨刚 , 黄明珠 , 刘斌 , 陈雪岚 . 微生物代谢工程生产L-酪氨酸研究进展[J]. 食品与发酵工业, 2024 , 50(18) : 361 -366 . DOI: 10.13995/j.cnki.11-1802/ts.038150

Abstract

L-tyrosine is an aromatic amino acid with significant nutritional functions, widely utilized in the food, feed, medicine, and chemical industries.Generally, the methods for producing L-tyrosine include chemical synthesis, hydrolysis, and metabolic engineering of modified microorganisms through metabolic engineering.Compared to the numerous drawbacks of the first two methods, metabolic engineering for modifying microorganisms to synthesize L-tyrosine is increasingly being widely used.This article reviewed the methods of using metabolic engineering to modify microorganisms to increase L-tyrosine production, providing insights for researchers in the field.

参考文献

[1] 姚元锋, 赵广荣. L-酪氨酸代谢工程研究进展[J]. 食品与发酵工业, 2013, 39(5):132-137.
YAO Y F, ZHAO G R. Advances on metabolic engineering of L-tyrosine[J]. Food and Fermentation Industries, 2013, 39(5):132-137.
[2] DALY R J, SCOTT A M, KLEIN O, et al. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition[J]. Molecular Cancer, 2022, 21(1):189.
[3] 曹艳芳, 张晨曦, 陶艺庆, 等. 不同水平酪氨酸对淅川乌骨鸡组织乌度及屠宰性状的影响[J]. 中国畜牧杂志, 2020, 56(12):109-113.
CAO Y F, ZHANG C X, TAO Y Q, et al. Effects of dietary tyrosine levels on tissue brightness value and slaughter traits of Xichuan black-bone chicken[J]. Chinese Journal of Animal Science, 2020, 56(12):109-113.
[4] PLOTNIKOV M B, PLOTNIKOVA T M. Tyrosol as a neuroprotector: Strong effects of a “weak” antioxidant[J]. Current Neuropharmacology, 2021, 19(4):434-448.
[5] MEHMOOD A, USMAN M, PATIL P, et al. A review on management of cardiovascular diseases by olive polyphenols[J]. Food Science & Nutrition, 2020, 8(9):4639-4655.
[6] 阮小波.多酶级联转化L-酪氨酸生产酪醇的研究[D]. 无锡:江南大学,2021.
RUAN X B.Study on tyrosol production from L-tyrosine using a muti-enzyme casca[D]. Wuxi:Jiangnan University,2021.
[7] SINGH S, NIMSE S B, MATHEW D E, et al. Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications[J]. Biotechnology Advances, 2021, 53:107773.
[8] CHEN H Y, DENG J, YAO X T, et al. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC[J]. Journal of Nanobiotechnology, 2021, 19(1):342.
[9] CALDAS M, SANTOS A C, VEIGA F, et al. Melanin nanoparticles as a promising tool for biomedical applications-a review[J]. Acta Biomaterialia, 2020, 105:26-43.
[10] WATSON A, WAYMAN J, KELLEY R, et al. Increased dietary intake of tyrosine upregulates melanin deposition in the hair of adult black-coated dogs[J]. Animal Nutrition (Zhongguo Xu Mu Shou Yi Xue Hui), 2018, 4(4):422-428.
[11] DALA-PAULA B M, DEUS V L, TAVANO O L, et al. In vitro bioaccessibility of amino acids and bioactive amines in 70% cocoa dark chocolate: What you eat and what you get[J]. Food Chemistry, 2021, 343:128397.
[12] 秀华,王自瑛,王后方.L-酪氨酸的合成研究[J]. 科技信息(科学教研),2007(33):343,397.
LI X H,WANG Z Y,WANG H F. Synthesis of L-tyrosine[J]. Heilongjiang Science and Technology Information,2007(33):343,397.
[13] MUJUMDAR P, KOPECKA J, BUA S, et al. Carbonic anhydrase XII inhibitors overcome temozolomide resistance in glioblastoma[J]. Journal of Medicinal Chemistry, 2019, 62(8):4174-4192.
[14] 蔡昌武. 氨基酸及其衍生物的分离提纯在手性合成中的应用[J]. 黑河学院学报, 2021, 12(5):186-188.
CAI C W. Separation and purification of amino acids and the derivatives and their applications in chiral synthesis[J]. Journal of Heihe University, 2021, 12(5):186-188.
[15] 孙秋君, 陈晓晔, 朱建良. 蛋白质降解及其产物氨基酸检测的研究进展[J]. 食品工业科技, 2011, 32(11):525-528.
SUN Q J, CHEN X Y, ZHU J L. Research of protein degradation and amino acid detection[J]. Science and Technology of Food Industry, 2011, 32(11):525-528.
[16] MCCARTY N S, LEDESMA-AMARO R. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends in Biotechnology, 2019, 37(2):181-197.
[17] GOSSET G, YONG-XIAO J, BERRY A. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli[J]. Journal of Industrial Microbiology, 1996, 17(1):47-52.
[18] PATNAIK R, LIAO J C. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield[J]. Applied and Environmental Microbiology, 1994, 60(11):3903-3908.
[19] LÜTKE-EVERSLOH T, STEPHANOPOULOS G. L-tyrosine production by deregulated strains of Escherichia coli[J]. Applied Microbiology and Biotechnology, 2007, 75(1):103-110.
[20] KOMERA I, GAO C, GUO L, et al. Bifunctional optogenetic switch for improving shikimic acid production in E. coli[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1):13.
[21] OLSON M M, TEMPLETON L J, SUH W, et al. Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains[J]. Applied Microbiology and Biotechnology, 2007, 74(5):1031-1040.
[22] IKEDA M, KATSUMATA R. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain[J]. Applied and Environmental Microbiology, 1992, 58(3):781-785.
[23] KIKUCHI Y, TSUJIMOTO K, KURAHASHI O. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli[J]. Applied and Environmental Microbiology, 1997, 63(2):761-762.
[24] YUAN X S, TU S, LIN J P, et al. Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates[J]. Applied Microbiology and Biotechnology, 2020, 104(5):2039-2050.
[25] KOGURE T, KUBOTA T, SUDA M, et al. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction[J]. Metabolic Engineering, 2016, 38:204-216.
[26] KURPEJOVIĆ E, BURGARDT A, BASTEM G M, et al. Metabolic engineering of Corynebacterium glutamicum for l-tyrosine production from glucose and xylose[J]. Journal of Biotechnology, 2023, 363:8-16.
[27] FUJIWARA R, NODA S, TANAKA T, et al. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate[J]. Nature Communications, 2020, 11(1):279.
[28] JO M, NOH M H, LIM H G, et al. Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate[J]. Microbial Cell Factories, 2019, 18(1):57.
[29] MUTANDA I, SUN J Z, JIANG J X, et al. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications[J]. Biotechnology Advances, 2022, 59:107952.
[30] GAO S Y, MA D, WANG Y T, et al. Whole-cell catalyze L-dopa to dopamine via co-expression of transport protein AroP in Escherichia coli[J]. BMC Biotechnology, 2023, 23(1):33.
[31] WU J, LIU Y F, ZHAO S, et al. Application of dynamic regulation to increase L-phenylalanine production in Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2019, 29(6):923-932.
[32] KIM B, BINKLEY R, KIM H U, et al. Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine[J]. Biotechnology and Bioengineering, 2018, 115(10):2554-2564.
[33] 王钦, 曾伟主, 周景文. 大肠杆菌酪氨酸转运系统基因敲除对酪氨酸生产的影响[J]. 生物工程学报, 2019, 35(7):1247-1255.
WANG Q, ZENG W Z, ZHOU J W. Effect of gene knockout of L-tyrosine transport system on L-tyrosine production in Escherichia coli[J]. Chinese Journal of Biotechnology, 2019, 35(7):1247-1255.
[34] RADI M S, SALCEDOSORA J E, KIM S H, et al. Membrane transporter identification and modulation via adaptive laboratory evolution[J]. Metabolic Engineering, 2022, 72:376-390.
[35] PING J R, WANG L, QIN Z J, et al. Synergetic engineering of Escherichia coli for efficient production of l-tyrosine[J]. Synthetic and Systems Biotechnology, 2023, 8(4):724-731.
[36] SETHY P S, SENGUPTA K, MUKHOPADHYAY S, et al. Translational regulation of δ-tubulin through its 5′-untranslated region[J]. Molecular Biology Reports, 2023, 50(4):3451-3458.
[37] KIM S C, MIN B E, HWANG H G, et al. Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli[J]. Scientific Reports, 2015, 5:13853.
[38] BAE H, COLLER J. Codon optimality-mediated mRNA degradation: Linking translational elongation to mRNA stability[J]. Molecular Cell, 2022, 82(8):1467-1476.
[39] XU S, ZHANG Y, LI Y R, et al. Production of L-tyrosine using tyrosine phenol-lyase by whole cell biotransformation approach[J]. Enzyme and Microbial Technology, 2019, 131:109430.
[40] ENGEL F, OSSIPOVA E, JAKOBSSON P J, et al. sRNA scr5239 involved in feedback loop regulation of Streptomyces coelicolor central metabolism[J]. Frontiers in Microbiology, 2020, 10:3121.
[41] NA D, YOO S M, CHUNG H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs[J]. Nature Biotechnology, 2013, 31(2):170-174.
[42] WANG R F, ZHAO S J, WANG Z T, et al. Recent advances in modular co-culture engineering for synthesis of natural products[J]. Current Opinion in Biotechnology, 2020, 62:65-71.
[43] JUMINAGA D, BAIDOO E E K, REDDING-JOHANSON A M, et al. Modular engineering of l-tyrosine production in Escherichia coli[J]. Applied and Environmental Microbiology, 2012, 78(1):89-98.
[44] HUANG J Q, AN Y F, ZABED H M, et al. Enhanced biosynthesis of D-arabitol by Metschnikowia reukaufii through optimizing medium composition and fermentation conditions[J]. Applied Biochemistry and Biotechnology, 2022, 194(7):3119-3135.
[45] 郑鹏凌.代谢工程改造地衣芽胞杆菌高效合成L-酪氨酸[D]. 武汉:湖北大学,2023.
ZHENG P L. Metabolic engineering of Bacillus licheniformis for efficient production of L-tyrosine[D]. Wuhan:Hubei University,2023.
[46] 刘韪玮, 李旭, 时唐恩, 等. 响应面分析优化L-酪氨酸发酵培养基[J]. 发酵科技通讯, 2023, 52(3):138-144,157.
LIU W W, LI X, SHI T E, et al. Optimization of L-tyrosine fermentation medium by response surface methodology[J]. Bulletin of Fermentation Science and Technology, 2023, 52(3):138-144,157.
文章导航

/