[1] 邬天雨. 燕窝的古今系统评述[D]. 哈尔滨: 黑龙江中医药大学, 2015.
WU T Y. Review on the ancient and modern system of bird’s nest[D]. Harbin: Heilongjiang University of Chinese Medicine, 2015.
[2] 袁满, 林小仙, 王东亮. 浅析燕窝中的核心营养物质蛋白质[J]. 中国食品, 2024(2):92-94.
YUAN M, LIN X X, WANG D L. Analysis on protein, the core nutrient in bird’s nest[J]. China Food, 2024(2):92-94.
[3] 李翠, 徐小涵, 林小仙, 等. 燕窝营养成分与功效研究现状[J/OL]. 食品与发酵工业. https://doi.org/10.13995/j.cnki.11-1802/ts.037340.
LI C, XU X H, LIN X X, et al. Research status of the nutritional composition and efficacy of bird’s nest[J]. Food and Fermentation Industry. https://doi.org/10.13995/j.cnki.11-1802/ts.037340.
[4] WILSON D M, COOKSON M R, VAN DEN BOSCH L, et al. Hallmarks of neurodegenerative diseases[J]. Cell, 2023, 186(4):693-714.
[5] CAREENA S, SANI D, TAN S N, et al. Effect of edible bird’s nest extract on lipopolysaccharide-induced impairment of learning and memory in wistar rats[J]. Evidence-Based Complementary and Alternative Medicine, 2018, 2018:9318789.
[6] SARKAR A, HARTY S, LEHTO S M, et al. The microbiome in psychology and cognitive neuroscience[J]. Trends in Cognitive Sciences, 2018, 22(7):611-636.
[7] 白伟娟,张小江,张晓婷,等.燕窝加工及其营养成分分析概述[J].食品工业,2022,43(6):342-346.
BAI W J, ZHANG X J, ZHANG X T, et al. Overview of bird’s nest processing and its nutrient composition analysis[J]. Food Industry, 2022,43(6): 342-346.
[8] QUEK M C, CHIN N L, YUSOF Y A, et al. Characterization of edible bird’s nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities[J]. Food Research International, 2018, 109:35-43.
[9] 张晨曦, 林小仙, 张维悦, 等. 燕窝对不同周期女性潜在调控作用的研究进展[J]. 食品与发酵工业, 2023, 49(5):328-336.
ZHANG C X, LIN X X, ZHANG W Y, et al. Research progress of the potentially regulatory effect of edible bird’s nest on females in different lifecycles[J]. Food and Fermentation Industries, 2023, 49(5):328-336.
[10] HOU Z P, IMAM M U, ISMAIL M, et al. Lactoferrin and ovotransferrin contribute toward antioxidative effects of Edible Bird’s Nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(10):1570-1578.
[11] ZUKEFLI S N, CHUA L S, RAHMAT Z. Protein extraction and identification by gel electrophoresis and mass spectrometry from edible bird’s nest samples[J]. Food Analytical Methods, 2017, 10(2):387-398.
[12] YEW M Y, KOH R Y, CHYE S M, et al. Neurotrophic properties and the de novo peptide sequencing of edible bird’s nest extracts[J]. Food Bioscience, 2019, 32:100466.
[13] JAMALLUDDIN N H, TUKIRAN N A, AHMAD FADZILLAH N, et al. Overview of edible bird’s nests and their contemporary issues[J]. Food Control, 2019, 104:247-255.
[14] DAUD N, SARBINI S R, BABJI A S, et al. Characterization of edible swiftlet′s nest as a prebiotic ingredient using a simulated colon model[J]. Annals of Microbiology, 2019, 69(12):1235-1246.
[15] WIERUSZESKI J M, MICHALSKI J C, MONTREUIL J, et al. Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). Characterization of novel types of extended core structure, Gal beta(1::3)[GlcNAc beta(1::6)]GalNAc alpha(1::3)GalNAc (-ol), and of chain termination,[Gal alpha(1::4)]0-1[Gal beta(1::4)]2GlcNAc beta(1::.)[J]. Journal of Biological Chemistry, 1987, 262(14):6650-6657.
[16] YAGI H, YASUKAWA N, YU S Y, et al. The expression of sialylated high-antennary N-glycans in edible bird’s nest[J]. Carbohydrate Research, 2008, 343(8):1373-1377.
[17] 由艳燕, 李兆杰, 薛长湖, 等. 美拉德反应对燕窝糖蛋白糖基化修饰及模拟胃肠液消化作用的影响[J]. 中国食品学报, 2014, 14(11):11-16.
YOU Y Y, LI Z J, XUE C H, et al. The effects of Maillard reaction on glycoproteinglycosylation in edible bird’s nestand simulated gastrointestinal digestion in vitro[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(11):11-16.
[18] LIU Q, XI Y J, WANG Q X, et al. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer′s disease mouse model via regulating the gut microbiota-brain axis[J]. Brain, Behavior, and Immunity, 2021, 95:330-343.
[19] 傅俊. 五味子多糖的结构表征、体外消化酵解特征及改善阿尔兹海默症的机制研究[D]. 长春: 吉林大学, 2023.
FU J. Structural characterization, in vitro digestion and glycolysis characteristics of Schisandra chinensis polysaccharide and its mechanism of improving Alzheimer′s disease[D]. Changchun: Jilin University, 2023.
[20] AHMAD H, ABDUL KHALID S, RASHED A, et al. Effects of sialic acid from edible bird nest on cell viability associated with brain cognitive performance in mice[J]. World Journal of Traditional Chinese Medicine, 2019, 5(4):214.
[21] WANG B. Sialic acid is an essential nutrient for brain development and cognition[J]. Annual Review of Nutrition, 2009, 29:177-222.
[22] WANG B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition[J]. Advances in Nutrition, 2012, 3(3):465S-472S.
[23] LOH S P, CHENG S H, MOHAMED W. Edible bird’s nest as a potential cognitive enhancer[J]. Frontiers in Neurology, 2022, 13:865671.
[24] MIJDAM R, BIJNAGTE-SCHOENMAKER C, DYKE E, et al. Sialic acid biosynthesis pathway blockade disturbs neuronal network formation in human iPSC-derived excitatory neurons[J]. Journal of Neurochemistry, 2023, 167(1):76-89.
[25] XIE Y, ZENG H L, HUANG Z J, et al. Effect of maternal administration of edible bird’s nest on the learning and memory abilities of suckling offspring in mice[J]. Neural Plasticity, 2018, 2018:7697261.
[26] MAHAQ O, P RAMELI M A, JAOI EDWARD M, et al. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice[J]. Brain and Behavior, 2020, 10(11): e01817.
[27] 鲁佩涵, 吴剑荣, 柳训才, 等. 燕窝中结合唾液酸调节5种益生菌生长以及孕妇肠道菌群组成的研究[J]. 食品与发酵工业, 2023, 49(17):53-61.
LU P H, WU J R, LIU X C, et al. Regulation of bacteria growth of five probiotics and intestinal flora of pregnant women by bound sialic acid of edible bird’s nest[J]. Food and Fermentation Industries, 2023, 49(17):53-61.
[28] QIAN X H, SONG X X, LIU X L, et al. Inflammatory pathways in Alzheimer′s disease mediated by gut microbiota[J]. Ageing Research Reviews, 2021, 68:101317.
[29] 郑勇, 程贝, 陈亦辉, 等. 星蒌承气汤联合丁苯酞治疗缺血性脑卒中疗效及对患者氧化应激、血液流变学的影响[J]. 陕西中医, 2023, 44(2):191-194.
ZHENG Y, CHENG B, CHEN Y H, et al. Effect of Xinglou Chengqi decoction combined with butylphthalide on oxidative stress and hemorheology in patients with ischemic stroke[J]. Shaanxi Journal of Traditional Chinese Medicine, 2023, 44(2):191-194.
[30] YEW M Y, KOH R Y, CHYE S M, et al. Edible bird’s nest improves motor behavior and protects dopaminergic neuron against oxidative and nitrosative stress in Parkinson’s disease mouse model[J]. Journal of Functional Foods, 2018, 48:576-585.
[31] 董建辉, 田巧基, 段素芳, 等. 燕窝提取物的抗氧化及促进表皮细胞生长活性比较[J]. 食品与发酵工业, 2019, 45(17):73-78.
DONG J H, TIAN Q J, DUAN S F, et al. Comparative study on anti-oxidation and promotion activity of epidermal cell growth of edible bird’s nest water extract[J]. Food and Fermentation Industries, 2019, 45(17):73-78.
[32] HU Q, LI G, YAO H, et al. Edible bird’s nest enhances antioxidant capacity and increases lifespan in Drosophila Melanogaster[J]. Cellular and Molecular Biology, 2016, 62(4):116-122.
[33] YEW M Y, KOH R Y, CHYE S M, et al. Edible bird’s nest ameliorates oxidative stress-induced apoptosis in SH-SY5Y human neuroblastoma cells[J]. BMC Complementary and Alternative Medicine, 2014, 14:391.
[34] HARRY G J, KRAFT A D. Neuroinflammation and microglia: Considerations and approaches for neurotoxicity assessment[J]. Expert Opinion on Drug Metabolism & Toxicology, 2008, 4(10):1265-1277.
[35] MEYER K C. Inflammation, Advancing Age and Nutrition[M]. Amsterdam: Elsevier, 2014:29-38.
[36] TERRANDO N, ERIKSSON L I, RYU J K, et al. Resolving postoperative neuroinflammation and cognitive decline[J]. Annals of Neurology, 2011, 70(6):986-995.
[37] KITAZAWA M, ODDO S, YAMASAKI T R, et al. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease[J]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2005, 25(39):8843-8853.
[38] SADIGH-ETEGHAD S, MAJDI A, MAHMOUDI J, et al. Astrocytic and microglial nicotinic acetylcholine receptors: An overlooked issue in Alzheimer’s disease[J]. Journal of Neural Transmission (Vienna, Austria, 2016, 123(12):1359-1367.
[39] VON B R. Glial cell dysregulation: A new perspective on Alzheimer disease[J]. Neurotoxicity Research, 2007, 12(4):215-232.
[40] 由艳燕. 燕窝唾液酸糖蛋白的纯化鉴定及体外消化吸收、抗炎活性研究[D]. 青岛: 中国海洋大学, 2014.
YOU Y Y. Purification, identification, in vitro digestion, absorption and anti-inflammatory activity of sialoglycan from bird’s nest[D]. Qingdao: Ocean University of China, 2014.
[41] YEW M Y, KOH R Y, CHYE S M, et al. Edible bird’s nest improves motor behavior and protects dopaminergic neuron against oxidative and nitrosative stress in Parkinson’s disease mouse model[J]. Journal of Functional Foods, 2018, 48:576-585.
[42] 林洁茹. 燕窝DNA基原鉴定及抗病毒作用研究[D]. 广州: 广州中医药大学, 2010.
LIN J R. Identification of DNA motif of bird’s nest and its antiviral effect[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2010.
[43] 冼小敏, 侯雁, 林洁茹, 等. 燕窝蛋白质在模拟胃肠环境中的降解研究[J]. 中药材, 2010, 33(11):1760-1763.
XIAN X M, HOU Y, LIN J R, et al. Study on degradation of protein of the edible birds’ nest (Aerodramus) in vitro[J]. Journal of Chinese Medicinal Materials, 2010, 33(11):1760-1763.
[44] 王鑫, 范群艳, 连建梅, 等. 燕窝消化特性的体外实验[J]. 食品与生物技术学报, 2021, 40(8):70-77.
WANG X, FAN Q Y, LIAN J M, et al. Study on in vitro digestion characteristics of bird’s nest[J]. Journal of Food Science and Biotechnology, 2021, 40(8):70-77.
[45] 张晓旭, 林小仙, 张丹, 等. 基于傅里叶变换红外光谱技术解析鲜炖燕窝中功能因子与肠道菌群的关系[J]. 光谱学与光谱分析, 2023, 43(8):2452-2457.
ZHANG X X, LIN X X, ZHANG D, et al. Study on the analysis of the relationship between functional factors and intestinal flora in freshly stewed bird’s nest based on Fourier transform infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(8):2452-2457.
[46] EULER U S V, GADDUM J H. An unidentified depressor substance in certain tissue extracts[J]. Journal of Physiology, 1931, 72(1):74-87.
[47] VUONG H E, YANO J M, FUNG T C, et al. The microbiome and host behavior[J]. Annual Review of Neuroscience, 2017, 40:21-49.
[48] 高标, 蔡梦宇, 屈易萃, 等. 食物防治抑郁症的研究现状及趋势分析[J]. 食品与生物技术学报, 2022, 41(8):53-64.
GAO B, CAI M Y, QU Y C, et al. Research status and trend analysis of food interventions for depression[J]. Journal of Food Science and Biotechnology, 2022, 41(8):53-64.
[49] NEEDHAM B D, KADDURAH-DAOUK R, MAZMANIAN S K. Gut microbial molecules in behavioural and neurodegenerative conditions[J]. Nature Reviews. Neuroscience, 2020, 21(12):717-731.
[50] AGIRMAN G, YU K B, HSIAO E Y. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374(6571):1087-1092.
[51] 赵平, 孔令胜, 季晓宇, 等. 唾液酸灌胃干预肠道微生态预防小鼠更年期抑郁症的机制[J]. 山东医药, 2024, 64(7):42-47.
ZHAO P, KONG L S, JI X Y, et al. Mechanism of sialic acid intervention in intestinal microecology to prevent climacteric depression in mice[J]. Shandong Medical Journal, 2024, 64(7):42-47.
[52] 范群艳. 基于脑肠轴的燕窝对断乳后仔鼠智力影响的分子机制[D]. 福州: 福建农林大学, 2023.
FAN Q Y. Molecular mechanism of the influence of bird’s nest on intelligence of weaned rats based on brain-gut axis[D]. Fuzhou: Fujian Agriculture and Forestry University, 2023.