Camellia sinensis var.assamica is a significant variety in China, and its composition impacts the regulation of intestinal microecology, sugar, lipid metabolism, and other functions.This study comparatively analyzed the influence of white tea, Pu'er raw tea, Pu'er ripe tea, and sour tea on the intestinal microecology of varied populations, prepared through different processes.An in vitro model for intestinal microbiota digestion was constructed by using fecal samples from healthy individuals as well as those suffering from constipation.Following co-culturing with tea soup for 24 hours, the fermentation broth was analyzed to determine both the microbial composition and short-chain fatty acid content.Additionally, metabolic pathway prediction with PICRUSt was performed.In both models, Camellia sinensis var.assamica decreased the ratio of Firmicutes/Bacteroidetes and promoted the abundance of Ruminococcus, Lachnospira, Bacteroidetes, Butyricicoccus, Akkermansia muciniphila, and other butyric acid-producing bacteria.It also inhibited pathogenic bacteria such as Streptococcus and Staphylococcus while increasing the content of short-chain fatty acids.Technical term abbreviations have been explained when first used.In the standard model, notable interventions were noted in metabolic pathways such as digestion, energy and lipid metabolism, biodegradation of exogenous compounds, and intestinal inflammation protection.In contrast, in the constipation model, Pu'er ripe tea significantly impacted only two metabolic pathways linked to cardiovascular health and the circulatory system.Compared to other Camellia sinensis var.assamica, Pu'er ripe tea considerably enhanced the diversity of intestinal flora.Additionally, sour tea notably increased the content of short-chain fatty acids in the constipation model.
[1] 李雪荣, 李晓丽.肠道菌群与非消化系统疾病关系的研究进展[J].胃肠病学和肝病学杂志, 2022, 31(1):14-17.
LI X R, LI X L.Research progress on the relationship between gut microbiota and non-digestive diseases[J].Chinese Journal of Gastroenterology and Hepatology, 2022, 31(1):14-17.
[2] WOTING A N, BLAUT M.The intestinal microbiota in metabolic disease[J].Nutrients, 2016, 8(4):202.
[3] TAN R, DONG H W, CHEN Z S, et al.Intestinal microbiota mediates high-fructose and high-fat diets to induce chronic intestinal inflammation[J].Frontiers in Cellular and Infection Microbiology, 2021, 11:654074.
[4] TANNOCK G W.Modulating the gut microbiota of humans by dietary intervention with plant glycans[J].Applied and Environmental Microbiology, 2021, 87(6):e02757-e02720.
[5] 李丹. 黑茶对肠道菌群的调节作用研究[D].广州:华南农业大学, 2016.
LI D.The study of the regulating effect of Dark tea on gut microbiota[D].Guangzhou:South China Agricultural University, 2016.
[6] BOND T, DERBYSHIRE E.Tea compounds and the gut microbiome:Findings from trials and mechanistic studies[J].Nutrients, 2019, 11(10):2364.
[7] 周方, 欧阳建, 黄建安, 等.茶多酚对肠道微生物的调节作用研究进展[J].茶叶科学, 2019, 39(6):619-630.
ZHOU F, OUYANG J, HUANG J A, et al.Advances in research on the regulation of tea polyphenols and effects on intestinal flora[J].Journal of Tea Science, 2019, 39(6):619-630.
[8] 王梦倩, 盛玉泊, 范怡航, 等.不同仓储条件下普洱茶关键成分分析及品质评价[J].食品研究与开发, 2022, 43(16):35-43.
WANG M Q, SHENG Y B, FAN Y H, et al.Key components and quality evaluation of Pu-erh tea with different storage conditions[J].Food Research and Development, 2022, 43(16):35-43
[9] 潘联云, 赵碧, 冉隆珣, 等.厌氧发酵促进酸茶中抗氧化物质生成的研究进展[J].食品与发酵工业, 2023, 49(16):350-355.
PAN L Y, ZHAO B, RAN L X, et al.Research progress of anaerobic fermentation to promote antioxidant substances synthesis in pickled tea[J].Food and Fermentation Industries, 2023, 49(16):350-355.
[10] 冯潇, 包璇, 向沙沙, 等.探究钴卟啉模拟结肠发酵对肠道菌群的调控[J].食品与发酵工业, 2020, 46(12):87-94.
FENG X, BAO X, XIANG S S, et al.Regulation of the gastrointestinal microbiota by cobalt porphyrins via simulated colonic fermentation[J].Food and Fermentation Industries, 2020, 46(12):87-94.
[11] MOON J S, JOO W, LING L, et al.In vitro digestion and fermentation of sialyllactoses by infant gut microflora[J].Journal of Functional Foods, 2016, 21:497-506.
[12] 王彩, 高培鑫, 许竞男, 等.小鼠粪便中短链脂肪酸提取与检测方法的建立及应用[J].现代生物医学进展, 2017, 17(6):1012-1015;1032.
WANG C, GAO P X, XU J N, et al.Establishment and application of extraction and determination method for short-chain fatty acids in feces of mice[J].Progress in Modern Biomedicine, 2017, 17(6):1012-1015;1032.
[13] KONIKOFF T, GOPHNA U.Oscillospira:A central, enigmatic component of the human gut microbiota[J].Trends in Microbiology, 2016, 24(7):523-524.
[14] BUI T P N, MANNERÅS-HOLM L, PUSCHMANN R, et al.Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health[J].Nature Communications, 2021, 12(1):4798.
[15] HOU Y, MAO H L, LU F M, et al.Widely targeted metabolomics and HPLC analysis elaborated the quality formation of Yunnan pickled tea during the whole process at an industrial scale[J].Food Chemistry, 2023, 422:135716.
[16] LI D T, FENG Y, TIAN M L, et al.Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation[J].Microbiome, 2021, 9(1):83.
[17] KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al.From dietary fiber to host physiology:Short-chain fatty acids as key bacterial metabolites[J].Cell, 2016, 165(6):1332-1345.
[18] 林杨凡, 林炫财, 孔晶晶, 等.短链脂肪酸调控肠道健康研究进展[J].现代消化及介入诊疗, 2022, 27(4):520-524.
LIN Y F, LIN X C, KONG J J, et al.Research progress of short-chain fatty acids regulating intestinal health[J].Modern Digestion & Intervention, 2022, 27(4):520-524.
[19] 戴博, 王广义.短链脂肪酸对肠道健康的调控机制研究[J].广东化工, 2020, 47(24):63;54.
DAI B, WANG G Y.Regulation mechanism of short chain fatty acids on intestinal health[J].Guangdong Chemical Industry, 2020, 47(24):63;54.
[20] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J].Nature, 2006, 444(7122):1027-1031.
[21] KELLY C J, ZHENG L, CAMPBELL E L, et al.Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J].Cell Host & Microbe, 2015, 17(5):662-671.
[22] GUTIERREZ A, FENG J N, TAN L B, et al.Inhibitory effect of four types of tea on the in vitro digestion of starch[J].Food Frontiers, 2020, 1(4):465-472.
[23] LI H S, FANG Q Y, NIE Q X, et al.Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration[J].Journal of Agricultural and Food Chemistry, 2020, 68(37):10015-10028.
[24] DE MOURA C, KABBAS T Jr, DE O PEDREIRA F R, et al.Purple tea (Camellia sinensis var.assamica) leaves as a potential functional ingredient:From extraction of phenolic compounds to cell-based antioxidant/biological activities[J].Food and Chemical Toxicology, 2022, 159:112668.
[25] AVIELLO G, KNAUS U G.ROS in gastrointestinal inflammation:Rescue Or Sabotage?[J].British Journal of Pharmacology, 2017, 174(12):1704-1718.
[26] YOON H S, CHO C H, YUN M S, et al.Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice[J].Nature Microbiology, 2021, 6(5):563-573.
[27] ZAFAR H, JR SAIER M H.Gut Bacteroides species in health and disease[J].Gut Microbes, 2021, 13(1):1-20.
[28] 杨智, 蒋洁琳, 官兴丽, 等.普洱茶调节肠道菌群作用的研究进展[J].食品与发酵工业, 2023, 49(21):303-312.
YANG Z, JIANG J L, GUAN X L, et al.Advances on the role of Pu-erh tea by regulating gut microbiota[J].Food and Fermentation Industries, 2023, 49(21):303-312.
[29] 李明珠, 李辉, 王丹.乳饮品中耐胃酸乳酸菌的分离鉴定与筛选[J].中国酿造, 2014, 33(9):42-44.
LI M Z, LI H, WANG D.Isolation, identification and screening of gastric acid tolerant lactic acid bacteria from milk drinks[J].China Brewing, 2014, 33(9):42-44.