[1] CHENG Q P, ZENG P, CHAN E W C, et al.Development of peptide-based metallo-β-lactamase inhibitors as a new strategy to combat antimicrobial resistance:A mini-review[J].Current Pharmaceutical Design, 2022, 28(44):3538-3545.
[2] MORRIS C F.The antimicrobial properties of the puroindolines, a review[J].World Journal of Microbiology & Biotechnology, 2019, 35(6):86.
[3] SHI S B, SHEN T F, LIU Y Q, et al.Porcine myeloid antimicrobial peptides:A review of the activity and latest advances[J].Frontiers in Veterinary Science, 2021, 8:664139.
[4] LI H X, NIU J H, WANG X L, et al.The contribution of antimicrobial peptides to immune cell function:A review of recent advances[J].Pharmaceutics, 2023, 15(9):2278.
[5] ALECU M, COMAN G, MUŞETESCU A, et al.Antimicrobial peptides as an argument for the involvement of innate immunity in psoriasis (Review)[J].Experimental and Therapeutic Medicine, 2020, 20(6):192.
[6] LAW D, ABDULKAREEM NAJM A, CHONG J X, et al.In silico identification and in vitro assessment of a potential anti-breast cancer activity of antimicrobial peptide retrieved from the ATMP1 Anabas testudineus fish peptide[J].PeerJ, 2023, 11:e15651.
[7] FERNANDES F C, CARDOSO M H, GIL-LEY A, et al.Geometric deep learning as a potential tool for antimicrobial peptide prediction[J].Frontiers in Bioinformatics, 2023, 3:1216362.
[8] TEIXEIRA M C, CARBONE C, SOUSA M C, et al.Nanomedicines for the delivery of antimicrobial peptides (AMPs)[J].Nanomaterials, 2020, 10(3):560.
[9] MAKHLYNETS O V, CAPUTO G A.Characteristics and therapeutic applications of antimicrobial peptides[J].Biophysics Reviews, 2021, 2(1):011301.
[10] LI X, ZUO S Y, WANG B, et al.Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides[J].Molecules, 2022, 27(9):2675.
[11] RIZZETTO G, GAMBINI D, MAURIZI A, et al.The sources of antimicrobial peptides against Gram-positives and Gramnegatives:Our research experience[J].Le Infezioni in Medicina, 2023, 31(3):306-322.
[12] ZHANG Q Y, YAN Z B, MENG Y M, et al.Antimicrobial peptides:Mechanism of action, activity and clinical potential[J].Military Medical Research, 2021, 8(1):48.
[13] ZAINAL BAHARIN N H, KHAIRIL MOKHTAR N F, MOHD DESA M N, et al.The characteristics and roles of antimicrobial peptides as potential treatment for antibiotic-resistant pathogens:A review[J].PeerJ, 2021, 9:e12193.
[14] LEE T H, HALL K N, AGUILAR M I.Antimicrobial peptide structure and mechanism of action:A focus on the role of membrane structure[J].Current Topics in Medicinal Chemistry, 2016, 16(1):25-39.
[15] VINEETH KUMAR T V, SANIL G.A review of the mechanism of action of amphibian antimicrobial peptides focusing on peptide-membrane interaction and membrane curvature[J].Current Protein & Peptide Science, 2017, 18(12):1263-1272.
[16] LAU Q Y, LI J G, SANI M A, et al.Elucidating the bactericidal mechanism of action of the linear antimicrobial tetrapeptide BRBR-NH2[J].Biochimica et Biophysica Acta.Biomembranes, 2018, 1860(8):1517-1527.
[17] YASIR M, DUTTA D, WILLCOX M D P.Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa[J].Scientific Reports, 2019, 9(1):7063.
[18] DASH R, BHATTACHARJYA S.Thanatin:An emerging host defense antimicrobial peptide with multiple modes of action[J].International Journal of Molecular Sciences, 2021, 22(4):1522.
[19] JUHL D W, GLATTARD E, AISENBREY C, et al.Antimicrobial peptides:Mechanism of action and lipid-mediated synergistic interactions within membranes[J].Faraday Discussions, 2021, 232:419-434.
[20] LIZIO M G, CAMPANA M, DE POLI M, et al.Insight into the mechanism of action and peptide-membrane interactions of aib-rich peptides:Multitechnique experimental and theoretical analysis[J].ChemBioChem, 2021, 22(9):1656-1667.
[21] JI F Y, ZHAO Y, JIANG F Q, et al.Membrane mechanism of temporin-1CEc, an antimicrobial peptide isolated from the skin secretions of Rana chensinensis, and its systemic analogs[J].Bioorganic Chemistry, 2022, 119:105544.
[22] RIESCO-LLACH G, LLANET-FERRER S, PLANAS M, et al.Deciphering the mechanism of action of the antimicrobial peptide BP100[J].International Journal of Molecular Sciences, 2024, 25(6):3456.
[23] BOONE K, WISDOM C, CAMARDA K, et al.Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides[J].BMC Bioinformatics, 2021, 22(1):239.
[24] AKBAR S, RAZA A, ZOU Q.Deepstacked-AVPs:Predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model[J].BMC Bioinformatics, 2024, 25(1):102.
[25] HADJICHARALAMBOUS A, BOURNAKAS N, NEWMAN H, et al.Antimicrobial and cell-penetrating peptides:Understanding penetration for the design of novel conjugate antibiotics[J].Antibiotics, 2022, 11(11):1636.
[26] LUO Y, SONG Y Z.Mechanism of antimicrobial peptides:Antimicrobial, anti-inflammatory and antibiofilm activities[J].International Journal of Molecular Sciences, 2021, 22(21):11401.
[27] BATTISTA F, OLIVA R, DEL VECCHIO P, et al.Insights into the action mechanism of the antimicrobial peptide lasioglossin III[J].International Journal of Molecular Sciences, 2021, 22(6):2857.
[28] RICILUCA K C T, OLIVEIRA U C, MENDONÇA R Z, et al.Rondonin:Antimicrobial properties and mechanism of action[J].FEBS Open Bio, 2021, 11(9):2541-2559.
[29] GUO F L, ZHANG Y, DONG W B, et al.Effect of hydrophobicity on distinct anticancer mechanism of antimicrobial peptide chensinin-1b and its lipoanalog PA-C1b in breast cancer cells[J].The International Journal of Biochemistry & Cell Biology, 2022, 143:106156.
[30] ZHANG M, YU Y L, LIAN L L, et al.Functional mechanism of antimicrobial peptide bomidin and its safety for Macrobrachium rosenbergii[J].Probiotics and Antimicrobial Proteins, 2022, 14(1):169-179.
[31] SU X, XU J, YIN Y B, et al.Antimicrobial peptide identification using multi-scale convolutional network[J].BMC Bioinformatics, 2019, 20(1):730.
[32] FU H Y, CAO Z C, LI M Y, et al.ACEP:Improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding[J].BMC Genomics, 2020, 21(1):597.
[33] YAN J L, BHADRA P, LI A, et al.Deep-AmPEP30:Improve short antimicrobial peptides prediction with deep learning[J].Molecular Therapy-Nucleic Acids, 2020, 20:882-894.
[34] PUENTES P R, HENAO M C, TORRES C E, et al.Design, screening, and testing of non-rational peptide libraries with antimicrobial activity:In silico and experimental approaches[J].Antibiotics, 2020, 9(12):854.
[35] DAS P, SERCU T, WADHAWAN K, et al.Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations[J].Nature Biomedical Engineering, 2021, 5(6):613-623.
[36] LIN T T, YANG L Y, LU I H, et al.AI4AMP:An antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning[J].mSystems, 2021, 6(6):e0029921.
[37] SHARMA R, SHRIVASTAVA S, KUMAR SINGH S, et al.AniAMPpred:Artificial intelligence guided discovery of novel antimicrobial peptides in animal Kingdom[J].Briefings in Bioinformatics, 2021, 22(6):bbab242.
[38] SHARMA R, SHRIVASTAVA S, KUMAR SINGH S, et al.Deep-ABPpred:Identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec[J].Briefings in Bioinformatics, 2021, 22(5):bbab065.
[39] ZHANG Y, LIN J Y, ZHAO L M, et al.A novel antibacterial peptide recognition algorithm based on BERT[J].Briefings in Bioinformatics, 2021, 22(6):bbab200.
[40] DEE W.LMPred:Predicting antimicrobial peptides using pre-trained language models and deep learning[J].Bioinformatics Advances, 2022, 2(1):vbac021.
[41] MA Y, GUO Z Y, XIA B B, et al.Identification of antimicrobial peptides from the human gut microbiome using deep learning[J].Nature Biotechnology, 2022, 40(6):921-931.
[42] PANG Y X, YAO L T, XU J Y, et al.Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities[J].Bioinformatics, 2022, 38(24):5368-5374.
[43] SINGH V, SHRIVASTAVA S, KUMAR SINGH S, et al.StaBle-ABPpred:A stacked ensemble predictor based on biLSTM and attention mechanism for accelerated discovery of antibacterial peptides[J].Briefings in Bioinformatics, 2022, 23(1):bbab439.
[44] SINGH V, SHRIVASTAVA S, KUMAR SINGH S, et al.Accelerating the discovery of antifungal peptides using deep temporal convolutional networks[J].Briefings in Bioinformatics, 2022, 23(2):bbac008.
[45] SUN T J, BU H L, YAN X, et al.LABAMPsGCN:A framework for identifying lactic acid bacteria antimicrobial peptides based on graph convolutional neural network[J].Frontiers in Genetics, 2022, 13:1062576.
[46] CAO Q S, GE C, WANG X J, et al.Designing antimicrobial peptides using deep learning and molecular dynamic simulations[J].Briefings in Bioinformatics, 2023, 24(2):bbad058.
[47] LEE H, LEE S, LEE I, et al.AMP-BERT:Prediction of antimicrobial peptide function based on a BERT model[J].Protein Science, 2023, 32(1):e4529.
[48] LI C K, WARREN R L, BIROL I.Models and data of AMPlify:A deep learning tool for antimicrobial peptide prediction[J].BMC Research Notes, 2023, 16(1):11.
[49] SHARMA R, SHRIVASTAVA S, SINGH S K, et al.Artificial intelligence-based model for predicting the minimum inhibitory concentration of antibacterial peptides against ESKAPEE pathogens[J].IEEE Journal of Biomedical and Health Informatics, 2024, 28(4):1949-1958.
[50] TEUFEL F, REFSGAARD J C, MADSEN C T, et al.DeepPeptide predicts cleaved peptides in proteins using conditional random fields[J].Bioinformatics, 2023, 39(10):btad616.
[51] YANG S, YANG Z X, NI X Y.AMPFinder:A computational model to identify antimicrobial peptides and their functions based on sequence-derived information[J].Analytical Biochemistry, 2023, 673:115196.
[52] ZHANG W T, XU Y C, WANG A W, et al.Fuse feeds as one:Cross-modal framework for general identification of AMPs[J].Briefings in Bioinformatics, 2023, 24(6):bbad336.
[53] ZHUANG J J, GAO W Q, SU R.EnAMP:A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features[J].Journal of Bioinformatics and Computational Biology, 2024, 22(1):2450001.
[54] DEAN S N, WALPER S A.Variational autoencoder for generation of antimicrobial peptides[J].ACS Omega, 2020, 5(33):20746-20754.
[55] DEAN S N, ALVAREZ J A E, ZABETAKIS D, et al.PepVAE:Variational autoencoder framework for antimicrobial peptide generation and activity prediction[J].Frontiers in Microbiology, 2021, 12:725727.
[56] WANG C, GARLICK S, ZLOH M.Deep learning for novel antimicrobial peptide design[J].Biomolecules, 2021, 11(3):471.
[57] HASEGAWA K, MORIWAKI Y, TERADA T, et al.Feedback-AVPGAN:Feedback-guided generative adversarial network for generating antiviral peptides[J].Journal of Bioinformatics and Computational Biology, 2022, 20(6):2250026.
[58] MAO J S, GUAN S H, CHEN Y Q, et al.Application of a deep generative model produces novel and diverse functional peptides against microbial resistance[J].Computational and Structural Biotechnology Journal, 2023, 21:463-471.
[59] PANDI A, ADAM D, ZARE A, et al.Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides[J].Nature Communications, 2023, 14(1):7197.
[60] TUČS A, BERENGER F, YUMOTO A, et al.Quantum annealing designs nonhemolytic antimicrobial peptides in a discrete latent space[J].ACS Medicinal Chemistry Letters, 2023, 14(5):577-582.
[61] ZHANG H P, SARAVANAN K M, WEI Y J, et al.Deep learning-based bioactive therapeutic peptide generation and screening[J].Journal of Chemical Information and Modeling, 2023, 63(3):835-845.
[62] DONG Q C, WANG S H, MIAO Y, et al.Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning[J].Scientific Reports, 2024, 14(1):4529.
[63] YU H Q, WANG R H, QIAO J B, et al.Multi-CGAN:Deep generative model-based multiproperty antimicrobial peptide design[J].Journal of Chemical Information and Modeling, 2024, 64(1):316-326.
[64] XIAO X, SHAO Y T, CHENG X, et al.iAMP-CA2L:A new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types[J].Briefings in Bioinformatics, 2021, 22(6):bbab209.
[65] LEE B, SHIN M K, YOO J S, et al.Identifying novel antimicrobial peptides from venom gland of spider Pardosa astrigera by deep multi-task learning[J].Frontiers in Microbiology, 2022, 13:971503.
[66] LI C K, SUTHERLAND D, HAMMOND S A, et al.AMPlify:Attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens[J].BMC Genomics, 2022, 23(1):77.
[67] RUIZ PUENTES P, HENAO M C, CIFUENTES J, et al.Rational discovery of antimicrobial peptides by means of artificial intelligence[J].Membranes, 2022, 12(7):708.
[68] SALEM M, KESHAVARZI ARSHADI A, YUAN J S.AMPDeep:Hemolytic activity prediction of antimicrobial peptides using transfer learning[J].BMC Bioinformatics, 2022, 23(1):389.
[69] TANG W D, DAI R Y, YAN W H, et al.Identifying multi-functional bioactive peptide functions using multi-label deep learning[J].Briefings in Bioinformatics, 2022, 23(1):bbab414.
[70] ANSARI M, WHITE A D.Learning peptide properties with positive examples only[J].BioRxiv, 2023:543289.
[71] LOBANOV M Y, SLIZEN M V, DOVIDCHENKO N V, et al.Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction[J].Molecular Informatics, 2024, 43(5):e202200181.
[72] RANDALL J R, VIEIRA L C, WILKE C O, et al.Deep mutational scanning and machine learning uncover antimicrobial peptide features driving membrane selectivity[J].BioRxiv, 2023:551017.
[73] THOKKADAM A, DO T, RAN X C, et al.High-throughput screen reveals the structure-activity relationship of the antimicrobial lasso peptide ubonodin[J].ACS Central Science, 2023, 9(3):540-550.
[74] WANG Y D, WANG L Y, LI C Q, et al.AMP-EBiLSTM:Employing novel deep learning strategies for the accurate prediction of antimicrobial peptides[J].Frontiers in Genetics, 2023, 14:1232117.
[75] XING W X, ZHANG J, LI C, et al.iAMP-Attenpred:A novel antimicrobial peptide predictor based on BERT feature extraction method and CNN-BiLSTM-Attention combination model[J].Briefings in Bioinformatics, 2023, 25(1):bbad443.
[76] XU J, LI F Y, LI C, et al.iAMPCN:A deep-learning approach for identifying antimicrobial peptides and their functional activities[J].Briefings in Bioinformatics, 2023, 24(4):bbad240.
[77] YAN J L, ZHANG B, ZHOU M L, et al.A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against Escherichia coli using Multi-Branch-CNN and Attention[J].mSystems, 2023, 8(4):e0034523.
[78] CHEN L H, HU Z K, RONG Y Z, et al.Deep2Pep:A deep learning method in multi-label classification of bioactive peptide[J].Computational Biology and Chemistry, 2024, 109:108021.
[79] YAN J L, CAI J X, ZHANG B, et al.Recent progress in the discovery and design of antimicrobial peptides using traditional machine learning and deep learning[J].Antibiotics, 2022, 11(10):1451.
[80] LEFIN N, HERRERA-BELÉN L, FARIAS J G, et al.Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides[J].Molecular Diversity, 2024,28(4):2365-2374.