研究报告

裸藻多糖超声碱提工艺优化、结构表征及抗氧化活性研究

  • 胡锋阳 ,
  • 李市场 ,
  • 宋根娣 ,
  • 丁慧 ,
  • 常英杰 ,
  • 龚明贵
展开
  • 1(河南科技大学 食品与生物工程学院,河南 洛阳,471023)
    2(河南省食品微生物工程技术研究中心,河南 洛阳,471023)
    3(洛阳理工学院 环境工程与化学学院,河南 洛阳,471023)
    4(洛阳欧科拜克生物技术股份有限公司,河南 洛阳,471023)
第一作者:硕士研究生(李市场副教授为通信作者,E-mail:lscgam@sina.com)

收稿日期: 2023-11-14

  修回日期: 2024-01-16

  网络出版日期: 2024-12-17

基金资助

国家自然科学基金项目(31900005);国家自然科学基金面上项目(31870093)

Ultrasonic-alkaline extraction, characterization, and antioxidant activity of paramylon from Euglena gracilis

  • HU Fengyang ,
  • LI Shichang ,
  • SONG Gendi ,
  • DING Hui ,
  • CHANG Yingjie ,
  • GONG Minggui
Expand
  • 1(College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China)
    2(Henan Provincial Food Microbiology Engineering Technology Research Center, Luoyang 471023, China)
    3(Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China)
    4(Luoyang Ouke Baike Biotechnology Co.Ltd., Luoyang 471023, China)

Received date: 2023-11-14

  Revised date: 2024-01-16

  Online published: 2024-12-17

摘要

该文探究了裸藻多糖(Euglena gracilis polysaccharide, EGP)的提取率、结构表征及体外抗氧化活性。采用超声碱提工艺结合Plackett-Burman和响应面设计对EGP提取率进行优化,采用凝胶渗透色谱、离子色谱、傅里叶变换红外光谱、扫描电镜和自由基清除实验对EGP的分子质量、单糖组成、基团构成、微观结构和抗氧化活性进行分析。超声碱提法用于EGP提取的最佳工艺参数为料液比为1∶40(g∶mL),水浴温度为41 ℃,水浴时间为0.9 h,NaOH溶液浓度为1 mol/L,超声功率为120 W,超声时间为3 min,在此条件下,EGP的提取率为(62.84±0.49)%。结果表明,EGP由100%葡萄糖组成,通过β-糖苷键连接,分子质量为2.13×104Da。抗氧化实验结果表明,EGP对羟自由基、DPPH自由基、ABTS阳离子自由基、超氧阴离子自由基均表现出良好的抗氧化活性。EGP的结构研究为裸藻的继续开发利用提供了科学的理论依据。

本文引用格式

胡锋阳 , 李市场 , 宋根娣 , 丁慧 , 常英杰 , 龚明贵 . 裸藻多糖超声碱提工艺优化、结构表征及抗氧化活性研究[J]. 食品与发酵工业, 2024 , 50(22) : 28 -36 . DOI: 10.13995/j.cnki.11-1802/ts.037951

Abstract

Euglena gracilis polysaccharide (EGP), as a new natural functional food, has attracted more and more attention.This study investigated the extraction yield, structural characterization, and in vitro antioxidant activity of EGP.The extraction yield EGP was optimized with ultrasonic-alkali extraction by Plackett-Burman and response surface design.The molecular weight, monosaccharide composition, group composition, microstructure, and antioxidant activity of EGP were analyzed using gel permeation chromatography (GPC), ion chromatography (IC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and free radical scavenging tests.The optimum process conditions were as follows:the liquid-to-material ratio of 1∶40 (g∶mL), water bath temperature of 41 ℃, water bath time of 0.9 h, NaOH solution concentration of 1 mol/L, ultrasonic power of 120 W, and ultrasonic time of 3 min.Under these conditions, the extraction yield was (62.84±0.49)%.Results indicated that EGP was composed of 100% glucose and connected by β-glycosidic bonds, and the molecular weight were 2.13×104 Da.Antioxidant experiments demonstrated that EGP showed good antioxidant activity against ·OH, DPPH free radicals, ABTS cationic radicals, and ·O-2.The structural study of EGP provides a scientific theoretical basis for the continued development and utilization of Euglena gracilis.

参考文献

[1] DAI J J, HE J Y, CHEN Z X, et al.Euglena gracilis promotes Lactobacillus growth and antioxidants accumulation as a potential next-generation prebiotic[J].Frontiers in Nutrition, 2022, 9:864565.
[2] KOTTUPARAMBIL S, THANKAMONY R L, AGUSTI S.Euglena as a potential natural source of value-added metabolites.A review[J].Algal Research, 2019, 37:154-159.
[3] SHIMADA R, FUJITA M, YUASA M, et al.Oral administration of green algae, Euglena gracilis, inhibits hyperglycemia in OLETF rats, a model of spontaneous type 2 diabetes[J].Food & Function, 2016, 7(11):4655-4659.
[4] XIE Y H, LI J, QIN H, et al.Paramylon from Euglena gracilis prevents lipopolysaccharide-induced acute liver injury[J].Frontiers in Immunology, 2022, 12:797096.
[5] NAKASHIMA A, SUZUKI K, ASAYAMA Y, et al.Oral administration of Euglena gracilis Z and its carbohydrate storage substance provides survival protection against influenza virus infection in mice[J].Biochemical and Biophysical Research Communications, 2017, 494(1-2):379-383.
[6] IIDA M, DESAMERO M J, YASUDA K, et al.Effects of orally administered Euglena gracilis and its reserve polysaccharide, paramylon, on gastric dysplasia in A4 gnt knockout mice[J].Scientific Reports, 2021, 11(1):13640.
[7] BRUN P, PIOVAN A, CANIATO R, et al.Anti-inflammatory activities of Euglena gracilis extracts[J].Microorganisms, 2021, 9(10):2058.
[8] IEIRI H, KAMEDA N, NAITO J, et al.Paramylon extracted from Euglena gracilis EOD-1 augmented the expression of SIRT1[J].Cytotechnology, 2021, 73(5):755-759.
[9] 张延林, 赵璐, 钟进义.一种裸藻多糖的提取方法:中国, CN105542031B[P].2017-12-15.
ZHANG Y L, ZHAO L, ZHONG J Y.Extraction method of naked algal polysaccharides:China, CN105542031B[P].2017-12-15.
[10] 葛智超, 郎蒙, 李燕.裸藻多糖的分离纯化、单糖组成及其抗氧化活性[J].上海海洋大学学报, 2021, 30(3):564-571.
GE Z C, LANG M, LI Y.Isolation, purification, monosaccharide composition and antioxidant activity analysis of Euglena gracilis polysaccharides[J].Journal of Shanghai Ocean University, 2021, 30(3):564-571.
[11] MARCHESSAULT R H, DESLANDES Y.Fine structure of (1→3)-β-D-glucans:Curdlan and paramylon[J].Carbohydrate Research, 1979, 75:231-242.
[12] LI P C, XUE H K, XIAO M, et al.Ultrasonic-assisted aqueous two-phase extraction and properties of water-soluble polysaccharides from Malus hupehensis[J].Molecules, 2021, 26(8):2213.
[13] SANG Y M, HAO Z T, DAI S S, et al.Optimization of aqueous two-phase extraction of polysaccharides from hawthorn by response surface methodology coupled with genetic algorithm and its antioxidant activity[J].Starch-Strke, 2023, 75(11-12):2300094.
[14] LIN Y Y, ZENG H Y, WANG K, et al.Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes:Process optimization, structure characterization and antioxidant activity[J].International Journal of Biological Macromolecules, 2019, 136:305-315.
[15] ZHU C P, ZHAI X C, LI L Q, et al.Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel[J].Food Chemistry, 2015, 177:139-146.
[16] JALILI F, JAFARI S M, EMAM-DJOMEH Z, et al.Optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology[J].Food Analytical Methods,2018, 11(2):598-612.
[17] 鞠海军. 裸藻多糖分离提取、结构鉴定及生物活性研究[D].上海:华东理工大学,2020.
JU H J.Separation, structure identification of paramylon and study on its bioactivities[D].Shanghai:East China University of Science and Technology, 2020.
[18] HE P F, ZHANG A Q, ZHANG F M, et al.Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus Sclerotia[J].Carbohydrate Polymers, 2016, 152:222-230.
[19] ZHANG Z, GUO L, YAN A P, et al.Fractionation, structure and conformation characterization of polysaccharides from Anoectochilus roxburghii[J].Carbohydrate Polymers, 2020, 231:115688.
[20] 姚艳婷, 杨小兵, 陈旭洁, 等.富硒蛹虫草多糖的结构表征及体外免疫调节活性[J].食品科学, 2023, 44(22):39-48.
YAO Y T, YANG X B, CHEN X J, et al.Structural characterization and in vitro immunomodulatory activity of polysaccharides from selenium-enriched Cordyceps militaris[J].Food Science, 2023, 44(22):39-48.
[21] BARSANTI L, PASSARELLI V, EVANGELISTA V, et al.Chemistry, physico-chemistry and applications linked to biological activities of β-glucans[J].Natural Product Reports, 2011, 28(3):457-466.
[22] 文愉熙, 黄晓舟, 林晓思.裸藻非水溶性和水溶性多糖的化学组成及抗氧化活性分析[J].食品工业科技, 2022, 43(5):105-113.
WEN Y X, HUANG X Z, LIN X S.Analysis of chemical composition and antioxidant activities of water-insoluble and water-soluble polysaccharides from Euglena gracilis[J].Science and Technology of Food Industry, 2022, 43(5):105-113.
[23] 栗晓庆, 吕俊平, 刘琪, 等.裸藻多糖碱提工艺优化及其体外抗氧化活性研究[J].食品科技, 2019, 44(9):209-215.
LI X Q, LYU J P, LIU Q, et al.Optimization of alkaline extraction and antioxidant activities of paramylon in vitro[J].Food Science and Technology, 2019, 44(9):209-215.
[24] 李珊, 梁俭, 冯群, 等.桂七青芒果皮多糖提取工艺的响应面优化及其体外抗氧化活性[J].食品工业科技, 2019, 40(4):220-225;231.
LI S, LIANG J, FENG Q, et al.Optimization of polysaccharides from Guiqi-mango peels by response surface methodology and its antioxidant activity in vitro[J].Science and Technology of Food Industry, 2019, 40(4):220-225;231.
[25] 赵茹, 康明丽, 张琴, 等.酶解辅助提取香菇多糖工艺优化及其抗氧化活性[J].食品研究与开发, 2023, 44(12):116-121.
ZHAO R, KANG M L, ZHANG Q, et al.Enzymatic hydrolysis-assisted extraction and antioxidant activity of polysaccharide from Lentinus edodes[J].Food Research and Development, 2023, 44(12):116-121.
[26] 李倩倩, 程婷婷, 刘涵, 等.刺梨果多糖提取工艺优化及抗氧化活性研究[J].粮食与油脂, 2022, 35(11):104-108;113.
LI Q Q, CHENG T T, LIU H, et al.Study on the extraction technology and antioxidant activity of polysaccharides from Rosa roxburghii Tratt fruit[J].Cereals & Oils, 2022, 35(11):104-108;113.
[27] ZHOU S Y, HUANG G L.Extraction, structure characterization and biological activity of polysaccharide from coconut peel[J].Chemical and Biological Technologies in Agriculture, 2023, 10(1):15.
[28] 刘洪超, 应苗苗, 周雨暪, 等.羊栖菜多糖提取条件优化及其抗氧化活性的研究[J].食品工业科技, 2017, 38(6):245-249;255.
LIU H C, YING M M, ZHOU Y M, et al.Optimization of extraction process of Sargassum fusiforme polysaccharide and antioxidant activity[J].Science and Technology of Food Industry, 2017, 38(6):245-249;255.
[29] 商佳琦, 邹丹阳, 滕翔宇, 等.5种食用菌多糖的结构特征及抗氧化活性对比[J].食品工业科技, 2020, 41(15):77-83;89.
SHANG J Q, ZOU D Y, TENG X Y, et al.Structural characterization and antioxidant activity of five kinds of edible fungus polysaccharides[J].Science and Technology of Food Industry, 2020, 41(15):77-83;89.
文章导航

/