[1] GEORGE F, DANIEL C, THOMAS M, et al. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective[J]. Frontiers in Microbiology, 2018, 9:2899.
[2] MOKOENA M P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review[J]. Molecules, 2017, 22(8):1255.
[3] BARROSO F A L, DE JESUS L C L, DE CASTRO C P, et al. Intake of Lactobacillus delbrueckii (pExu: hsp65) prevents the inflammation and the disorganization of the intestinal mucosa in a mouse model of mucositis[J]. Microorganisms, 2021, 9(1):107.
[4] FARAZI T A, JURANEK S A, TUSCHL T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members[J]. Development, 2008, 135(7):1201-1214.
[5] STORZ G, VOGEL J, WASSARMAN K M. Regulation by small RNAs in bacteria: Expanding frontiers[J]. Molecular Cell, 2011, 43(6):880-891.
[6] DUTTA T, SRIVASTAVA S. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms[J]. Gene, 2018, 656:60-72.
[7] BEHLER J, HESS W R. Approaches to study CRISPR RNA biogenesis and the key players involved[J]. Methods, 2020, 172:12-26.
[8] NITZAN M, REHANI R, MARGALIT H. Integration of bacterial small RNAs in regulatory networks[J]. Annual Review of Biophysics, 2017, 46:131-148.
[9] LI W J, YING X M, LU Q X, et al. Predicting sRNAs and their targets in bacteria[J]. Genomics, Proteomics & Bioinformatics, 2012, 10(5):276-284.
[10] ZHANG A X, WASSARMAN K M, ROSENOW C, et al. Global analysis of small RNA and mRNA targets of Hfq[J]. Molecular Microbiology, 2003, 50(4):1111-1124.
[11] VOGEL J, BARTELS V, TANG T H, et al. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria[J]. Nucleic Acids Research, 2003, 31(22):6435-6443.
[12] VAN DER MEULEN S B, JONG A D, KOK J. Early transcriptome response of Lactococcus lactis to environmental stresses reveals differentially expressed small regulatory RNAs and tRNAs[J]. Frontiers in Microbiology, 2017, 8:1704.
[13] DAVANLOO P, ROSENBERG A H, DUNN J J, et al. Cloning and expression of the gene for bacteriophage T7 RNA polymerase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(7):2035-2039.
[14] MCCULLEN C A, BENHAMMOU J N, MAJDALANI N, et al. Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: Pairing increases translation and protects rpoS mRNA from degradation[J]. Journal of Bacteriology, 2010, 192(21):5559-5571.
[15] SALVAIL H, LANTHIER-BOURBONNAIS P, SOBOTA J M, et al. A small RNA promotes siderophore production through transcriptional and metabolic remodeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34):15223-15228.
[16] BOUVIER M, SHARMA C M, MIKA F, et al. Small RNA binding to 5′ mRNA coding region inhibits translational initiation[J]. Molecular Cell, 2008, 32(6):827-837.
[17] SONNLEITNER E, BLÄSI U. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression[J]. PLoS Genetics, 2014, 10(6): e1004440.
[18] MACKIE G A. RNase E: at the interface of bacterial RNA processing and decay[J]. Nature Reviews. Microbiology, 2013, 11(1):45-57.
[19] PRÉVOST K, DESNOYERS G, JACQUES J F, et al. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage[J]. Genes & Development, 2011, 25(4):385-396.
[20] BAKER C S, MOROZOV I, SUZUKI K, et al. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli[J]. Molecular Microbiology, 2002, 44(6):1599-1610.
[21] WALLING L R, KOUSE A B, SHABALINA S A, et al. A 3′ UTR-derived small RNA connecting nitrogen and carbon metabolism in enteric bacteria[J]. Nucleic Acids Research, 2022, 50(17):10093-10109.
[22] IOSUB I A, MARCHIORETTO M, VAN NUES R W, et al. The mRNA derived MalH sRNA contributes to alternative carbon source utilization by tuning maltoporin expression in E. coli[J]. RNA Biology, 2021, 18(6):914-931.
[23] PU J Y, ZHANG S B, HE X, et al. The small RNA AmiL regulates quorum sensing-mediated virulence in Pseudomonas aeruginosa PAO1[J]. Microbiology Spectrum, 2022, 10(2): e0221121.
[24] ZENG S H, SHI Q X, LIU Y Z, et al. The small RNA PrrH of Pseudomonas aeruginosa regulates hemolysis and oxidative resistance in bloodstream infection[J]. Microbial Pathogenesis, 2023, 180:106124.
[25] ZAPF R L, WIEMELS R E, KEOGH R A, et al. The small RNA Teg41 regulates expression of the alpha phenol-soluble modulins and is required for virulence in Staphylococcus aureus[J]. mBio, 2019, 10(1): e02484-18.
[26] WANG L X, JI C H, XIA X Z, et al. A regulatory SRNA Rli43 is involved in the modulation of biofilm formation and virulence in Listeria monocytogenes[J]. Pathogens, 2022, 11(10):1137.
[27] LI J, NING C C, LI N, et al. The small RNA STnc1480 contributes to the regulation of biofilm formation and pathogenicity in Salmonella typhimurium[J]. Archives of Microbiology, 2022, 204(12):716.
[28] ALTUVIA S, WEINSTEIN-FISCHER D, ZHANG A, et al. A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator[J]. Cell, 1997, 90(1):43-53.
[29] YANG G, LI B A, JIA L L, et al. A novel sRNA in Shigella flexneri that regulates tolerance and virulence under hyperosmotic pressure[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10:483.
[30] VAN DER MEULEN S B, HESSELING-MEINDERS A, JONG A D, et al. The protein regulator ArgR and the sRNA derived from the 3′-UTR region of its gene, ArgX, both regulate the arginine deiminase pathway in Lactococcus lactis[J]. PLoS One, 2019, 14(6): e0218508.
[31] WU H, SONG S Y, TIAN K R, et al. A novel small RNA S042 increases acid tolerance in Lactococcus lactis F44[J]. Biochemical and Biophysical Research Communications, 2018, 500(3):544-549.
[32] LALAOUNA D, BAUDE J, WU Z F, et al. RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation[J]. Nucleic Acids Research, 2019, 47(18):9871-9887.
[33] DESGRANGES E, BARRIENTOS L, HERRGOTT L, et al. The 3′UTR-derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucose-6-phosphate uptake in Staphylococcus aureus[J]. Molecular Microbiology, 2022, 117(1):193-214.
[34] SILVAGGI J M, PERKINS J B, LOSICK R. Small untranslated RNA antitoxin in Bacillus subtilis[J]. Journal of Bacteriology, 2005, 187(19):6641-6650.
[35] SONG A A L, IN L L A, LIM S H E, et al. A review on Lactococcus lactis: From food to factory[J]. Microbial Cell Factories, 2017, 16(1):55.
[36] QI J K, CAIYIN Q, WU H, et al. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44[J]. Applied Microbiology and Biotechnology, 2017, 101(16):6483-6493.
[37] MIAO S, WU H, ZHAO Y, et al. Enhancing nisin yield by engineering a small noncodding RNA anti41 and inhibiting the expression of glnR in Lactococcus lactis F44[J]. Biotechnology Letters, 2018, 40(6):941-948.
[38] NAKASHIMA Y, SHIIYAMA N, URABE T, et al. Functions of small RNAs in Lactobacillus casei-Pediococcus group of lactic acid bacteria using fragment analysis[J]. FEMS Microbiology Letters, 2020, 367(19): fnaa154.
[39] WADLER C S, VANDERPOOL C K. Characterization of homologs of the small RNA SgrS reveals diversity in function[J]. Nucleic Acids Research, 2009, 37(16):5477-5485.
[40] XIA L, XIA W, LI S H, et al. Identification and expression of small non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans[J]. Nucleic Acid Therapeutics, 2012, 22(3):177-186.
[41] WANG J C, SUN Z T, QIAO J, et al. Metatranscriptome profiling of the dynamic transcription of mRNA and sRNA of a probiotic Lactobacillus strain in human gut[J]. bioRxiv, 2018: 442673.
[42] LI K W, YANG G J, DEBRU A B, et al. SuhB Regulates the Motile-Sessile Switch in Pseudomonas aeruginosa through the Gac/Rsm Pathway and c-di-GMP Signaling[J]. Frontiers in Microbiology, 2017, 8:1045.
[43] PETERSON J M, PHILLIPS G J. Characterization of conserved bases in 4.5S RNA of Escherichia coli by construction of new F′ factors[J]. Journal of Bacteriology, 2008, 190(23):7709-7718.
[44] GÖßRINGER M, LECHNER M, BRILLANTE N, et al. Protein-only RNase P function in Escherichia coli: Viability, processing defects and differences between PRORP isoenzymes[J]. Nucleic Acids Research, 2017, 45(12):7441-7454.
[45] SHIN J H, PRICE C W. The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures[J]. Journal of Bacteriology, 2007, 189(10):3729-3737.
[46] SALIM N N, FANER M A, PHILIP J A, et al. Requirement of upstream Hfq-binding (ARN)x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY[J]. Nucleic Acids Research, 2012, 40(16):8021-8032.
[47] FOWLER Z M, BRONOVITSKIY S S, ROSE F K, et al. Identification of a small regulatory RNA UspS associated with the universal stress protein in Lactobacillus species[J]. Journal of the South Carolina Academy of Science, 2023, 21(2): 3.
[48] ZHENG H J, LIU E N, SHI T, et al. Strand-specific RNA-seq analysis of the Lactobacillus delbrueckii subsp. bulgaricus transcriptome[J]. Molecular BioSystems, 2016, 12(2):508-519.
[49] XIONG Z Q, LV Z X, SONG X, et al. Recent research advances in small regulatory RNAs in Streptococcus[J]. Current Microbiology, 2021, 78(6):2231-2241.
[50] KARVELIS T, GASIUNAS G, MIKSYS A, et al. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus[J]. RNA Biology, 2013, 10(5):841-851.
[51] LIU G F, CHANG H D, QIAO Y L, et al. Profiles of small regulatory RNAs at different growth phases of Streptococcus thermophilus during pH-Controlled batch fermentation[J]. Frontiers in Microbiology, 2021, 12:765144.
[52] BUSBY L B, HOXHA K, OAKES W C III, et al. Identification of small regulatory RNA transcripts in extracellular vesicles from lactic acid bacteria[J]. The FASEB Journal, 2022, 36(S1): R5232.
[53] SONG X, HUANG H, XIONG Z Q, et al. CRISPR-Cas9D10A Nickase-Assisted Genome Editing in Lactobacillus casei[J]. Applied and Environmental Microbiology, 2017, 83(22): e01259-17.
[54] KONG L H, XIONG Z Q, SONG X, et al. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus[J]. Journal of Dairy Science, 2022, 105(8):6499-6512.