分析与检测

SERS结合免疫层析同时检测螺旋霉素和替米考星的方法

  • 赵翔 ,
  • 疏小惠 ,
  • 袁少锋 ,
  • 于航 ,
  • 马宁 ,
  • 常化仿 ,
  • 章祥 ,
  • 姚卫蓉
展开
  • 1(江南大学,食品科学与资源挖掘全国重点实验室,江苏 无锡,214122)
    2(江南大学 食品科学与技术学院,江苏 无锡,214122)
    3(江南大学,协同创新中心食品安全与质量控制中心,江苏 无锡,214122)
    4(普拉瑞思科学仪器(苏州)有限公司,江苏 苏州,215163)
第一作者:硕士研究生(姚卫蓉教授为通信作者,E-mail:yaoweirongcn@jiangnan.edu.cn)

收稿日期: 2024-04-22

  修回日期: 2024-05-24

  网络出版日期: 2024-12-30

基金资助

国家自然科学基金项目(32372421)

Study on simultaneous detection of spiramycin and tilmicosin by SERS combined with immunochromatography

  • ZHAO Xiang ,
  • SHU Xiaohui ,
  • YUAN Shaofeng ,
  • YU Hang ,
  • MA Ning ,
  • CHANG Huafang ,
  • ZHANG Xiang ,
  • YAO Weirong
Expand
  • 1(State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China)
    2(School of Food Science and Technology Jiangnan University, Wuxi 214122, China)
    3(Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China)
    4(Polaris (Suzhou) Scientific Instruments Company, Suzhou 215163, China)

Received date: 2024-04-22

  Revised date: 2024-05-24

  Online published: 2024-12-30

摘要

该研究制备了以金核银壳为增强基底的拉曼免疫探针,通过优化抗体添加量、促凝剂种类和添加量、包被抗原浓度、探针添加量等关键因素,实现了对螺旋霉素和替米考星的同时检测。在该方法中,螺旋霉素和替米考星均为0.000 1~10 ng/mL,浓度的对数值与抑制率有良好的线性关系,螺旋霉素和替米考星的检测限分别为0.57 pg/mL和0.25 pg/mL。选用牛奶进行加标实验验证方法的可行性,发现两者的回收率和相对标准偏差均符合方法要求。通过测定交叉反应率,确定螺旋霉素和替米考星之间无交叉反应,且均与红霉素、竹桃霉素、克拉霉素、罗红霉素无交叉反应,确保了方法的特异性。该方法快速便捷、灵敏度高,可满足螺旋霉素和替米考星的现场同时检测需求。

本文引用格式

赵翔 , 疏小惠 , 袁少锋 , 于航 , 马宁 , 常化仿 , 章祥 , 姚卫蓉 . SERS结合免疫层析同时检测螺旋霉素和替米考星的方法[J]. 食品与发酵工业, 2024 , 50(24) : 289 -297 . DOI: 10.13995/j.cnki.11-1802/ts.039645

Abstract

In this study, a Raman immunoprobe with a gold-core silver-shell as the enhanced substrate was prepared, and the simultaneous detection of spiramycin and tilmicosin was achieved through optimizing the key factors, including antibody addition, coagulant type and dosage, concentration of encapsulated antigen, and probe addition.In the method, both spiramycin and tilmicosin exhibited a good linear relationship between the logarithmic values of concentration and inhibition rate within the range of 0.000 1 ng/mL to 10 ng/mL.The detection limits for spiramycin and tilmicosin were determined to be 0.57 pg/mL and 0.25 pg/mL, respectively.The feasibility of the method was validated by conducting spiked experiments in milk, and it was found that the recoveries and relative standard deviations of spiramycin and tilmicosin complied with the requirements of the method.Furthermore, cross-reactivity studies demonstrated specificity, showing no cross-reactivity between spiramycin, tilmicosin, and other antibiotics such as erythromycin, oleandomycin, clarithromycin, or roxithromycin.Overall, the method is rapid, convenient and sensitive, and can meet the requirement of simultaneous determination of spiramycin and tilmicosin.

参考文献

[1] ALTAN F, YESILMEN ALP S.Antimicrobial susceptibility testing of Arcobacter butzleri and Arcobacter cryaerophilus isolated from buffalo milk with subclinical mastitis:A different approach[J].Journal of the Hellenic Veterinary Medical Society, 2022, 73(2):4227-4234.
[2] XIONG J, ZHU Q, YANG S, et al.Comparison of pharmacokinetics of tilmicosin in healthy pigs and pigs experimentally infected with Actinobacillus pleuropneumoniae[J].New Zealand Veterinary Journal, 2019, 67(5):257-263.
[3] ZHANG Q Q, YING G G, PAN C G, et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J].Environmental Science & Technology, 2015, 49(11):6772-6782.
[4] GAO J, ZHU M M, HUANG H, et al.Advances, challenges and promises of carbon dots[J].Inorganic Chemistry Frontiers, 2017, 4(12):1963-1986.
[5] COLLABORATORS A R.Global burden of bacterial antimicrobial resistance in 2019:A systematic analysis[J].The Lancet, 2022, 399(10325):629-655.
[6] World Health Organization.WHO list of critically important antimicrobials for human medicine (WHO CIA list)[R].World Health Organization, 2019.
[7] LEKE A Z, DOLK H, LOANE M, et al.Macrolide and lincosamide antibiotic exposure in the first trimester of pregnancy and risk of congenital anomaly:A European case-control study[J].Reproductive Toxicology, 2021, 100:101-108.
[8] VEENHUIZEN M F, WRIGHT T J, MCMANUS R F, et al.Analysis of reports of human exposure to Micotil 300 (tilmicosin injection)[J].Journal of the American Veterinary Medical Association, 2006, 229(11):1737-1742.
[9] Official Journal of the European Union.Commission regulation (EU) No.37/2010 on pharmacologically active substances and their classification regarding maximumresidue limits in foodstuffs of animal origin[S].Brussels:European Commission, 2009.
[10] The Japan Food Chemical Research Foundation.Maximum residue limits (MRLs) list of agricultural chemicals in foods[EB/OL].https://db.ffcr.or.jp/front/,2023-03-28.
[11] PEREIRA B F M, PEREIRA M U, FERREIRA R G, et al.Dietary exposure assessment to macrolide antimicrobial residues through infant formulas marketed in Brazil[J].Food Additives & Contaminants:Part A, 2021, 38(10):1672-1688.
[12] SALEH H, ELHENAWEE M, HUSSIEN E M, et al.Validation of HPLC-UV multi-residue method for the simultaneous determination of tetracycline, oxytetracycline, spiramycin and neospiramycin in raw milk[J].Food Analytical Methods, 2021, 14(1):36-43.
[13] KWIECIEN' A, KRZEK J, GADEK M.Simultaneous identification and quantitative determination of azithromycin, clarithromycin, roxithromycin, spiramycin and troleandomycin by thin-layer chromatography and densitometry[J].Acta Chromatographica, 2014, 26(4):657-670.
[14] THANH XUAN D, HOANG V D.Application of Fourier transform-based algorithms to resolve spectral overlapping for UV spectrophotometric co-assay of spiramycin and metronidazole in tablets[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 277:121253.
[15] 洪茜. 基于表面增强拉曼光谱的鸭肉中大环内酯类抗生素残留检测研究[D].南昌:江西农业大学, 2015.
HONG Q. Detection of macrolide antibiotic residues in duck meat based on surface enhanced Raman spectroscopy. Nanchang: Jiangxi Agricultural University, 2015.
[16] LI X M, WEN K, CHEN Y Q, et al.Multiplex immunogold chromatographic assay for simultaneous determination of macrolide antibiotics in raw milk[J].Food Analytical Methods, 2015, 8(9):2368-2375.
[17] JIANG W X, ZHANG H Y, LI X M, et al.Monoclonal antibody production and the development of an indirect competitive enzyme-linked immunosorbent assay for screening spiramycin in milk[J].Journal of Agricultural and Food Chemistry, 2013, 61(46):10925-10931.
[18] SONG Y H, SONG S S, LIU L Q, et al.Simultaneous detection of tylosin and tilmicosin in honey using a novel immunoassay and immunochromatographic strip based on an innovative hapten[J].Food and Agricultural Immunology, 2016, 27(3):314-328.
[19] FRENS G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J].Nature Physical Science, 1973, 241:20-22.
[20] WU X C, YIN L M, GAO S P, et al.Core-satellite nanoassembly system with aptamer-conjugated Au@ Ag nanoparticles for SERS detection of patulin in apples[J].Food Control, 2024, 159:110293.
[21] HUANG W, GUO E H, LI J G, et al.Quantitative and ultrasensitive detection of brombuterol by a surface-enhanced Raman scattering (SERS)-based lateral flow immunochromatographic assay (FLIA) using AgMBA@Au-Ab as an immunoprobe[J].The Analyst, 2021, 146(1):296-304.
[22] SHI Q Q, HUANG J, SUN Y N, et al.A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J].Mikrochimica Acta, 2018, 185(2):84.
[23] ZHANG Y X, WU G, WEI J T, et al.Rapid and sensitive detection of rotavirus by surface-enhanced Raman scattering immunochromatography[J].Mikrochimica Acta, 2021, 188(1):3.
[24] ZHOU X X, CHEN S H, PAN Y, et al.High-performance Au@Ag nanorods substrate for SERS detection of malachite green in aquatic products[J].Biosensors, 2023, 13(8):766.
[25] DENG D D, YANG H, LIU C, et al.Ultrasensitive detection of Sudan I in food samples by a quantitative immunochromatographic assay[J].Food Chemistry, 2019, 277:595-603.
[26] BI S Y, YUAN Y, ZHANG F M, et al.A sensitive surface-enhanced Raman spectroscopy detection for gentamicin and tobramycin using γ-Al2O3-modified silver nanoparticles coated with bovine serum albumin as substrate[J].Talanta, 2023, 260:124635.
[27] CHEN Y K, YANG S X, SHI X R, et al.Au@ 4-MBA@ Ag NPs labeled SERS lateral flow immunoassay for ultrasensitive and quantitative detection of Salmonella enteritidis[J].Microchemical Journal, 2023, 193:109134.
[28] LIU Z W, CHEN J Y, ZHAO S J, et al.Immunochromatographic assays based on three kinds of nanoparticles for the rapid and highly sensitive detection of tylosin and tilmicosin in eggs[J].Mikrochimica Acta, 2021, 189(1):42.
[29] YANG J Y, PAN M F, LIU K X, et al.Core-shell AuNRs@Ag-enhanced and magnetic separation-assisted SERS immunosensing platform for amantadine detection in animal-derived foods[J].Sensors and Actuators B:Chemical, 2021, 349:130783.
[30] XU L J, LEI Z C, LI J X, et al.Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity[J].Journal of the American Chemical Society, 2015, 137(15):5149-5154.
[31] HU R, ZHANG K N, WANG W, et al.Quantitative and sensitive analysis of polystyrene nanoplastics down to 50 nm by surface-enhanced Raman spectroscopy in water[J].Journal of Hazardous Materials, 2022, 429:128388.
[32] HENDRICKSON O D, ZVEREVA E A, ZHERDEV A V, et al.Development of a double immunochromatographic test system for simultaneous determination of lincomycin and tylosin antibiotics in foodstuffs[J].Food Chemistry, 2020, 318:126510.
[33] WANG Z H, LI H, LI C L, et al.Development and application of a quantitative fluorescence-based immunochromatographic assay for fumonisin B1 in maize[J].Journal of Agricultural and Food Chemistry, 2014, 62(27):6294-6298.
[34] LI X M, SHEN J Z, WANG Q, et al.Multi-residue fluorescent microspheres immunochromatographic assay for simultaneous determination of macrolides in raw milk[J].Analytical and Bioanalytical Chemistry, 2015, 407(30):9125-9133.
文章导航

/