[1] FANZONE M, GONZÁLEZ-MANZANO S, PÉREZ-ALONSO J, et al. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside[J]. Food Chemistry, 2015, 175:166-173.
[2] 黄小晶,李阿波,沈甜,等.贺兰山东麓红葡萄酒颜色差异分析[J].食品与发酵工业,2024,50(10):180-186.
HUANG X J, LI A B, SHEN T, et al. Analysis of colour differences in red wines from the eastern foot of Helan Mountains[J]. Food and Fermentation Industry,2024,50(10):180-186.
[3] 马懿,喻康杰,赖晓琴,等.单宁添加对赤霞珠葡萄酒颜色和花色苷含量变化的影响及其相关性研究[J].食品工业科技,2024,45(5):81-88.
MA Y,YU K J,LAI X Q,et al. Effects of tannin addition on changes in color and anthocyanin content of cabernet sauvignon wine and their correlation[J].Science and Technology of Food Industry,2024,45(5):81-88.
[4] ENARU B, DRE\U021BCANU G, POP T D, et al. Anthocyanins: Factors affecting their stability and degradation[J]. Antioxidants, 2021, 10(12):1967.
[5] LIU C Y, WU L L, FAN S Y, et al. The protective effect of cyclodextrin on the color quality and stability of Cabernet Sauvignon red wine[J]. Journal of Integrative Agriculture, 2024, 23(1):310-323.
[6] TIAN M B, HU R Q, LIU Z L, et al. The pH adjustment of Vitis amurensis dry red wine revealed the evolution of organic acids, volatomics, and sensory quality during winemaking[J]. Food Chemistry, 2024, 436:137730.
[7] 张扬, 彭晶晶, 李坤一, 等. 发酵前添加有机酸对西拉红葡萄酒颜色和感官质量的影响[J]. 食品与发酵工业, 2023, 49(7):90-98.
ZHANG Y, PENG J J, LI K Y, et al. Effects of organic acid added before fermentation on color and sensory quality of Syrah red wine[J]. Food and Fermentation Industries, 2023, 49(7):90-98.
[8] 刘霞, 邢佳雨, 冯敬雯, 等. 红葡萄酒辅助呈色作用研究进展[J]. 中国酿造, 2023, 42(11):9-14.
LIU X, XING J Y, FENG J W, et al. Research progress on copigmentation of red wine[J]. China Brewing, 2023, 42(11):9-14.
[9] VIDAL S, WILLIAMS P, DOCO T, et al. The polysaccharides of red wine: Total fractionation and characterization[J]. Carbohydrate Polymers, 2003, 54(4):439-447.
[10] JONES-MOORE H R, JELLEY R E, MARANGON M, et al. The polysaccharides of winemaking: From grape to wine[J]. Trends in Food Science & Technology, 2021, 111:731-740.
[11] JONES-MOORE H R, JELLEY R E, MARANGON M, et al. The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking[J]. Food Hydrocolloids, 2022, 123:107150.
[12] CANALEJO D, MARTÍNEZ-LAPUENTE L, AYESTARÁN B, et al. Potential use of grape and wine polysaccharide extracts as fining agents to modulate the volatile composition of Viura wines[J]. Food Chemistry, 2024, 430:137047.
[13] WANG J D, ZHAO Y Q, SUN B, et al. The structure of anthocyanins and the copigmentation by common micromolecular copigments: A review[J]. Food Research International, 2024, 176:113837.
[14] VORAGEN A G J, COENEN G J, VERHOEF R P, et al. Pectin, a versatile polysaccharide present in plant cell walls[J]. Structural Chemistry, 2009, 20(2):263-275.
[15] MANJÓN E, LI S Y, DUEÑAS M, et al. Effect of the addition of soluble polysaccharides from red and white grape skins on the polyphenolic composition and sensory properties of Tempranillo red wines[J]. Food Chemistry, 2023, 400:134110.
[16] FERNANDES A, OLIVEIRA J, FONSECA F, et al. Molecular binding between anthocyanins and pectic polysaccharides-Unveiling the role of pectic polysaccharides structure[J]. Food Hydrocolloids, 2020, 102:105625.
[17] WEILACK I, MEHREN L, SCHIEBER A, et al. Grape-derived pectic polysaccharides alter the tannin and pigment composition of Cabernet Sauvignon red wines[J]. Current Research in Food Science, 2023, 6:100506.
[18] OSETE-ALCARAZ A, BAUTISTA-ORTÍN A B, GÓMEZ-PLAZA E. The role of soluble polysaccharides in tannin-cell wall interactions in model solutions and in wines[J]. Biomolecules, 2019, 10(1):36.
[19] 王升楠, 王晓宇, 赵鹏涛, 等. 葡萄酒多糖的演变及影响因素研究概述[J]. 食品与发酵工业, 2021, 47(1):309-316.
WANG S N, WANG X Y, ZHAO P T, et al. Advances on the evolution of wine polysaccharides and its influencing factors[J]. Food and Fermentation Industries, 2021, 47(1):309-316.
[20] GONÇALVES F J, FERNANDES P A R, WESSEL D F, et al. Interaction of wine mannoproteins and Arabinogalactans with anthocyanins[J]. Food Chemistry, 2018, 243:1-10.
[21] GENÇDAĞ E, ÖZDEMIR E E, DEMIRCI K, et al. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques[J]. Current Plant Biology, 2022, 29:100238.
[22] FERNANDES A, RAPOSO F, EVTUGUIN D V, et al. Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights[J]. Carbohydrate Polymers, 2021, 255:117432.
[23] FERNANDES A, BRANDÃO E, RAPOSO F, et al. Impact of grape pectic polysaccharides on anthocyanins thermostability[J]. Carbohydrate Polymers, 2020, 239:116240.
[24] FERNANDES A, BRÁS N F, OLIVEIRA J, et al. Impact of a pectic polysaccharide on oenin copigmentation mechanism[J]. Food Chemistry, 2016, 209:17-26.
[25] 赵梓含, 张爱忠, 徐凡婷, 等. 酵母细胞壁多糖的结构及生物功能[J]. 黑龙江畜牧兽医, 2023(4):25-29;127.
ZHAO Z H, ZHANG A Z, XU F T, et al. Structure and biological function of yeast cell wall polysaccharide[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023(4):25-29;127.
[26] LIU Y, HUANG G L, LV M J. Extraction, characterization and antioxidant activities of mannan from yeast cell wall[J]. International Journal of Biological Macromolecules, 2018, 118:952-956.
[27] 李振慧, 刘龙, 单昊书, 等. 酵母多糖生物学调控机制及其在畜禽上的应用[J]. 饲料研究, 2022, 45(12):139-143.
LI Z H, LIU L, SHAN H S, et al. Biological regulation mechanism of yeast polysaccharide and its application in livestock and poultry[J]. Feed Research, 2022, 45(12):139-143.
[28] 马文锦. 两株胶红酵母菌的胞外多糖结构、生物活性及转录组表达差异分析[D].西安:陕西科技大学, 2018.
MA W J. Differential analysis of extracellular polysaccharide structure, bioactivity and transcriptome expression of two strains of Gum Red Yeast[D].Xian:Shaanxi University of Science and Technology, 2018.
[29] ALCALDE-EON C, PÉREZ-MESTRE C, FERRERAS-CHARRO R, et al. Addition of mannoproteins and/or seeds during winemaking and their effects on pigment composition and color stability[J]. Journal of Agricultural and Food Chemistry, 2019, 67(14):4031-4042.
[30] 牛育林, 何旺庄. ‘黑比诺'干红葡萄酒酿造工艺优化及探讨[J]. 中外葡萄与葡萄酒, 2020(3):45-49.
NIU Y L, HE W Z. Optimization and discussion about winemaking technology of ‘Pinot Noir' dry red wine[J]. Sino-Overseas Grapevine & Wine, 2020(3):45-49.
[31] YUE X F, JING S S, NI X F, et al. Anthocyanin and phenolic acids contents influence the color stability and antioxidant capacity of wine treated with mannoprotein[J]. Frontiers in Nutrition, 2021, 8:691784.
[32] RINALDI A, GONZALEZ A, MOIO L, et al. Commercial mannoproteins improve the mouthfeel and colour of wines obtained by excessive tannin extraction[J]. Molecules, 2021, 26(14):4133.
[33] RODRIGUES A, RICARDO-DA-SILVA J M, LUCAS C, et al. Effect of commercial mannoproteins on wine colour and tannins stability[J]. Food Chemistry, 2012, 131(3):907-914.
[34] 荆思思, 倪小凡, 王庶, 等. 甘露糖蛋白对‘赤霞珠'葡萄酒中糖酸和香气的影响[J]. 中国酿造, 2022, 41(1):143-148.
JING S S, NI X F, WANG S, et al. Effect of mannoproteins on sugar, acid and aroma of ‘Cabernet Sauvignon' wine[J]. China Brewing, 2022, 41(1):143-148.
[35] 赵越凡, 王升楠, 赵鹏涛, 等. 酵母多糖对葡萄酒品质的影响机理研究进展[J]. 食品与发酵工业, 2023, 49(17):316-323.
ZHAO Y F, WANG S N, ZHAO P T, et al. Research progress on the mechanism of wine quality by yeast polysaccharides[J]. Food and Fermentation Industries, 2023, 49(17):316-323.
[36] LI S Y, ZHAI H Y, MA W, et al. Yeast mannoproteins: Organoleptic modulating functions, mechanisms, and product development trends in winemaking[J]. Food Frontiers, 2023, 4(3):1091-1126.
[37] 张烨, 孙玉梅, 俞志敏, 等. 糖分对葡萄酒发酵的影响[J]. 食品与发酵工业, 2017, 43(4):280-285.
ZHANG Y, SUN Y M, YU Z M, et al. Effects of saccharides on wine fermentation[J]. Food and Fermentation Industries, 2017, 43(4):280-285.
[38] LETICIA M L, ZENAIDA G, BELéN A. Properties of Wine Polysaccharides[M]. IntechOpen, 2019.
[39] FILIPE-RIBEIRO L, MILHEIRO J, GUISE R, et al. Efficiency of carboxymethylcellulose in red wine tartaric stability: Effect on wine phenolic composition, chromatic characteristics and colouring matter stability[J]. Food Chemistry, 2021, 360:129996.
[40] BENUCCI I. Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine[J]. LWT, 2020, 118:108732.
[41] WANG S N, MA Z Q, ZHAO P T, et al. The role of Arabic gum on astringency by modulating the polyphenol fraction-protein reaction in model wine[J]. Food Chemistry, 2023, 417:135927.
[42] ZHANG X K, LAN Y B, HUANG Y, et al. Targeted metabolomics of anthocyanin derivatives during prolonged wine aging: Evolution, color contribution and aging prediction[J]. Food Chemistry, 2021, 339:127795.
[43] 曹鹏, 张波, 张欣珂, 等. 陈酿前添加咖啡酸对干红葡萄酒颜色品质及多酚构成的影响[J]. 中国食品学报, 2019, 19(7):153-160.
CAO P, ZHANG B, ZHANG X K, et al. The influence of caffeic acid addition before aging on the chromatic quality and phenolic composition of dry red wines[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(7):153-160.
[44] HE F, LIANG N N, MU L, et al. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression[J]. Molecules, 2012, 17(2):1571-1601.
[45] ASSUNÇÃO BICCA S, PONCET-LEGRAND C, ROI S, et al. Exploring the influence of S. cerevisiae mannoproteins on wine astringency and color: Impact of their polysaccharide part[J]. Food Chemistry, 2023, 422:136160.
[46] ZANG Z H, TANG S Y, LI Z Y, et al. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(5):4378-4401.
[47] TANG R, HE Y, FAN K. Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: A review[J]. Food Bioscience, 2023, 56:103164.
[48] VELOSO M I, COELHO E, TRABULO O, et al. Elderberry concentrate juice industrial by-products characterization and valorisation[J]. Applied Sciences, 2022, 12(19):9463.
[49] LIN Z, FISCHER J, WICKER L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J]. Food Chemistry, 2016, 194:986-993.
[50] BUCHWEITZ M, SPETH M, KAMMERER D R, et al. Impact of pectin type on the storage stability of black currant (Ribes nigrum L.) anthocyanins in pectic model solutions[J]. Food Chemistry, 2013, 139(1-4):1168-1178.
[51] KOPJAR M, PILIOTA V, NEDIĆ TIBAN N, et al. Strawberry Jams: Influence of different pectins on colour and textural properties[J]. Czech Journal of Food Sciences, 2009, 27(1):20-28.
[52] KOH J, XU Z M, WICKER L. Blueberry pectin and increased anthocyanins stability under in vitro digestion[J]. Food Chemistry, 2020, 302:125343.
[53] OYÓN-ARDOIZ M, MANJÓN E, ESCRIBANO-BAILÓN M T, et al. Effect of mannoproteins from different oenological yeast on pigment composition and color stability of red wine[J]. LWT, 2022, 172:114219.
[54] 尹宁宁, 许引虎, 李敏, 等. 不同酵母多糖对蛇龙珠干红葡萄酒品质的影响[J]. 食品与生物技术学报, 2018, 37(6):646-654.
YIN N N, XU Y H, LI M, et al. Effect of yeast polysaccharide on the quality of wine cabernet gernischt dry red[J]. Journal of Food Science and Biotechnology, 2018, 37(6):646-654.
[55] DEL BARRIO GALÁN R, ÚBEDA C, GIL M, et al. Different application dosages of a specific inactivated dry yeast (SIDY): Effect on the polysaccharides, phenolic and volatile contents and color of sauvignon Blanc wines[J]. OENO One, 2018, 52(4).
[56] ZHAO L, PAN F, MEHMOOD A, et al. Improved color stability of anthocyanins in the presence of ascorbic acid with the combination of rosmarinic acid and xanthan gum[J]. Food Chemistry, 2021, 351:129317.
[57] ZHAO L, PAN F, MEHMOOD A, et al. Protective effect and mechanism of action of xanthan gum on the color stability of black rice anthocyanins in model beverage systems[J]. International Journal of Biological Macromolecules, 2020, 164:3800-3807.
[58] ZHAO X, ZHANG X D, TIE S S, et al. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study[J]. Food Hydrocolloids, 2020, 109:106114.
[59] WANG L, XIANG D, LI C A, et al. Effects of lyophilization and low-temperature treatment on the properties and conformation of xanthan gum[J]. Food Hydrocolloids, 2021, 112:106352.
[60] WATRELOT A A, LE BOURVELLEC C, IMBERTY A, et al. Neutral sugar side chains of pectins limit interactions with procyanidins[J]. Carbohydrate Polymers, 2014, 99:527-536.
[61] FERNANDES P A R, LE BOURVELLEC C, RENARD C M G C, et al. Interactions of Arabinan-rich pectic polysaccharides with polyphenols[J]. Carbohydrate Polymers, 2020, 230:115644.
[62] XIAO Z Y, ZHOU W X, ZHANG Y X. Fungal polysaccharides[M]. Amsterdam: Elsevier, 2020:277-299.
[63] WANG Y Q, WANG Y, LUO Q, et al. Molecular characterization of the effects of Ganoderma Lucidum polysaccharides on the structure and activity of bovine serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206:538-546.