γ-氨基丁酸(γ-aminobutyric acid,GABA)广泛应用于食品和医药等领域,目前主要利用大肠杆菌(Escherichia coli)作为宿主菌,由酶催化方法生产。在全细胞转化过程中,GABA会进入三羧酸循环进行降解,导致转化率低下;通过敲基因阻碍此途径又会严重影响宿主菌的生长。该研究揭示了一条新的GABA的消耗途径:GABA在胞质非特异性二肽酶(cytosolic nonspecific dipeptidase,pepD)的作用下缩合形成二肽。该文构建了2个工程菌株:敲除E.coli BL21(DE3)基因组上的pepD基因,构建了ΔpepD菌株;在E.coli BL21(DE3)中过表达了pepD基因,构建了OEpepD菌株。以GABA和谷氨酸钠(monosodium glutamate,MSG)为底物,进行全细胞转化反应。结果表明,该酶不能催化MSG发生反应,但是能催化GABA发生反应。通过研究2个菌株消耗GABA的历程,发现OEpepD的GABA消耗量比ΔpepD菌株高出17.5%,消耗量在2 h之后都不再增加。利用LC-MS鉴定纯酶催化反应的产物,证实产物是GABA形成的二肽。该研究构建的菌株可以在不影响大肠杆菌生长的情况下有效提高GABA的产量,为GABA的工业化生产提供有益参考。
γ-Aminobutyric acid (GABA), widely used in the fields of food and medicine, is currently primarily produced using Escherichia coli (E.coli) as the host through enzyme-catalyzed methods.In the whole-cell conversion process, GABA enters the TCA cycle for degradation, leading to a low conversion rate.Inhibiting this pathway by knocking out genes severely affects the growth of the host.This study reveals a new GABA consumption pathway:GABA is catalyzed by the nonspecific dipeptidase (cytosolic nonspecific dipeptidase,pepD) enzyme to form dipeptides.This study constructed two engineered strains:ΔpepD strain, in which the pepD gene on the E.coli BL21(DE3) genome was knocked out, and OEpepD strain, in which the pepD gene was overexpressed in E.coli BL21(DE3).Using GABA and monosodium glutamate (MSG) as substrates, the whole-cell conversion reactions were conducted.Results indicated that MSG cannot be catalyzed by the pepD, but GABA could be catalyzed by the pepD.It was found that the GABA consumption in the OEpepD strain was 17.5% higher than that in the ΔpepD strain during the GABA consumption process, and the consumption did not increase after 2 hours.LC-MS analysis of the products catalyzed by the pure pepD confirmed that a dipeptide was formed from GABA.The results of this study provide an engineered strains that effectively increases GABA production without affecting the growth of E.coli, and provide valuable insights for the industrial production of GABA.
[1] 王泳超. γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制[D].哈尔滨:东北农业大学, 2016.
WANG Y C.Mechanism of aminobutyric acid (GABA) regulating maize seed germination and seedling growth under salt stress[D].Harbin:Northeast Agricultural University, 2016.
[2] RAMOS-RUIZ R, POIROT E, FLORES-MOSQUERA M.GABA, a non-protein amino acid ubiquitous in food matrices[J].Cogent Food & Agriculture, 2018, 4(1):1534323.
[3] MILOSEVIC L, GRAMER R, KIM T H, et al.Modulation of inhibitory plasticity in basal ganglia output nuclei of patients with Parkinson's disease[J].Neurobiology of Disease, 2019, 124:46-56.
[4] SHEKARI A, NAGHSHIBAND HASSANI R, SOLEIMANI AGHDAM M.Exogenous application of GABA retards cap browning in Agaricus bisporus and its possible mechanism[J].Postharvest Biology and Technology, 2021, 174:111434.
[5] LYU C J, ZHAO W R, PENG C L, et al.Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production[J].Microbial Cell Factories, 2018, 17(1):180.
[6] JIN L F, CAI Y T, SUN C, et al.Exogenous L-glutamate treatment could induce resistance against penicillium expansum in pear fruit by activating defense-related proteins and amino acids metabolism[J].Postharvest Biology and Technology, 2019, 150:148-157.
[7] 王辉, 项丽丽, 张锋华.γ-氨基丁酸(GABA)的功能性及在食品中的应用[J].食品工业, 2013, 34(6):186-189.
WANG H, XIANG L L, ZHANG F H.Function and application in food industry of γ-aminobutyric acid[J].Food Industry, 2013, 34(6):186-189.
[8] 宁亚维, 马梦戈, 杨正, 等.γ-氨基丁酸的制备方法及其功能食品研究进展[J].食品与发酵工业, 2020, 46(23):238-247.
NING Y W, MA M G, YANG Z, et al.Research progress in the enrichment process and functional foods of γ-aminobutyric acid[J].Food and Fermentation Industries, 2020, 46(23):238-247.
[9] 吴凡, 谭青松.γ-氨基丁酸在动物营养中的研究进展[J].饲料研究, 2015, (2):61-65.
WU F, TAN Q S.Research progress of γ-aminobutyric acid in animal nutrition[J].Feed Research, 2015, (2):61-65.
[10] 侯亚男, 冯昆.中药微生物转化研究进展[J].云南中医中药杂志, 2019, 40(12):66-69.
HOU Y N, FENG K.Research progress on microbial transformation of traditional Chinese medicine[J].Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2019,40(12):66-69.
[11] YU P, REN Q, WANG X X, et al.Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering[J].Biochemical Engineering Journal, 2019, 141:252-258.
[12] YANG X W, KE C R, ZHU J M, et al.Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst[J].Applied Microbiology and Biotechnology, 2018, 102(8):3623-3633.
[13] KE C R, YANG X W, RAO H X, et al.Whole-cell conversion of L-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli[J].SpringerPlus, 2016, 5:591.
[14] NIEGEMANN E, SCHULZ A, BARTSCH K.Molecular organization of the Escherichia coli gab cluster:Nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene[J].Archives of Microbiology, 1993, 160(6):454-460.
[15] METZER E, LEVITZ R, HALPERN Y S.Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate[J].Journal of Bacteriology, 1979, 137(3):1111-1118.
[16] KUMAR S, PUNEKAR N S, SATYANARAYAN V, et al.Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger[J].Biotechnology and Bioengineering, 2000, 67(5):575-584.
[17] LE VO T D, KIM T W, HONG S H.Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli[J].Bioprocess and Biosystems Engineering, 2012, 35(4):645-650.
[18] KURIHARA S, KATO K, ASADA K, et al.A Putrescine-inducible pathway comprising PuuE-YneI in which γ-aminobutyrate is degraded into succinate in Escherichia coli K-12[J].Journal of Bacteriology, 2010, 192(18):4582-4591.
[19] PRICE C W, FAWCETT P, CÉRÉMONIE H, et al.Genome-wide analysis of the general stress response in Bacillus subtilis[J].Molecular Microbiology, 2001, 41(4):757-774.
[20] IM D K, HONG J, GU B, et al.13C metabolic flux analysis of Escherichia coli engineered for gamma-aminobutyrate production[J].Biotechnology Journal, 2020, 15(6):e1900346.
[21] PHAM V D, SOMASUNDARAM S, LEE S H, et al.Redirection of metabolic flux into novel gamma-aminobutyric acid production pathway by introduction of synthetic scaffolds strategy in Escherichia coli[J].Applied Biochemistry and Biotechnology, 2016, 178(7):1315-1324.
[22] PATTERSON E K, GATMAITAN J S, HAYMAN S.Substrate specificity and pH dependence of dipeptidases purified from Escherichia coli B and from mouse ascites tumor cells[J].Biochemistry, 1973, 12(19):3701-3709.
[23] HAYMAN S, GATMAITAN J S, PATTERSON E K.The relationship of extrinsic and intrinsic metal ions to the specificity of a dipeptidase from Escherichia coli B[J].Biochemistry, 1974, 13(22):4486-4494.
[24] JING Z Y, XU J, LIU J, et al.Multiplex gene knockout raises Ala-Gln production by Escherichia coli expressing amino acid ester acyltransferase[J].Applied Microbiology and Biotechnology, 2023, 107(11):3523-3533.
[25] JÄMTGÅRD S, ROBINSON N, MORITZ T, et al.Optimising methods for the recovery and quantification of di- and tripeptides in soil[J].Soil Research, 2018, 56(4):404.
[26] LIU Y R, PAN X W, ZHANG H W, et al.Combinatorial protein engineering and transporter engineering for efficient synthesis of L-carnosine in Escherichia coli[J].Bioresource Technology, 2023, 387:129628.