研究报告

桦树茸多糖羧甲基化修饰工艺优化、理化性质及降糖活性研究

  • 王俊龙 ,
  • 时文盼 ,
  • 蔺永刚 ,
  • 柴雨阳 ,
  • 边鹏 ,
  • 江升旗 ,
  • 刘伟
展开
  • 1(伊犁师范大学 新疆生物质资源清洁转化与高值化利用重点实验室,新疆 伊宁,835000)
    2(重庆医科大学 儿科学院,重庆,404100)
第一作者:硕士,实验师(刘伟高级实验师为通信作者,E-mail:ucasliuwei@126.com)

收稿日期: 2024-03-07

  修回日期: 2024-04-11

  网络出版日期: 2025-03-10

基金资助

新疆维吾尔自治区自然科学基金项目(2022D01C455);伊犁师范大学提升综合实力专项重点项目(22XKZZ08)

Carboxymethyl modification, physicochemical properties, and hypoglycemic activity of Inonotuso bliquus polysaccharides

  • WANG Junlong ,
  • SHI Wenpan ,
  • LIN Yonggang ,
  • CHAI Yuyang ,
  • BIAN Peng ,
  • JIANG Shengqi ,
  • LIU Wei
Expand
  • 1(Xinjiang Key Laboratory of Clean Conversion and High-Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China)
    2(College of Pediatrics, Chongqing Medical University, Chongqing 404100, China)

Received date: 2024-03-07

  Revised date: 2024-04-11

  Online published: 2025-03-10

摘要

以桦树茸为原料制备粗多糖,经纯化后多糖(Inonotuso bliquus polysaccharides, IBP)通过氢氧化钠-氯乙酸反应法制备羧甲基桦树茸多糖(carboxymethylation Inonotuso bliquus polysaccharides, CM-IBP),采用单因素及响应面法优化羧甲基化修饰工艺,并对其理化性质及体外降糖活性进行对比研究。研究结果表明最佳修饰工艺为:碱化温度51 ℃、氯乙酸添加质量分数2.3%、反应时间4 h,此条件下取代度为0.312。IBP、CM-IBP黏度分别为(3 298±99.6) mPa·s、(2 984±96.7) mPa·s,溶解度分别为(59.54±0.96) mg/mL、(86.32±0.79) mg/mL,蛋白质、糖醛酸含量均下降。IBP、CM-IBP均由Fuc、Ara、Xyl、Man、Glc、Gal共6种单糖组成,但单糖的比例发生变化。紫外、红外光谱、刚果红实验、X射线衍射、扫描电镜及能谱测试结果表明,CM-IBP具有典型的羧甲基化多糖特征吸收峰,并且羧甲基化修饰能够改变多糖的空间形态。热稳定实验(热重、示差热重、差示扫描量热分析)发现CM-IBP热稳定性优于IBP,并且IBP、CM-IBP在230 ℃以下趋于稳定。IBP、CM-IBP对α-葡萄糖甘酶抑制作用IC50分别为2.64、1.0 mg/mL,对α-淀粉酶抑制抑制作用IC50分别为3.68、2.29 mg/mL,当质量浓度为5 mg/mL时,CM-IBP对α-葡萄糖甘酶和α-淀粉酶的抑制率比IBP提高约20%,表明IBP、CM-IBP均具有体外降糖活性,并且CM-IBP比IBP体外降糖活性效果更显著。研究结果可为进一步研究桦树茸多糖的构效关系和开发具有潜力的药食同源产品提供依据,同时也为多糖修饰研究提供理论参考。

本文引用格式

王俊龙 , 时文盼 , 蔺永刚 , 柴雨阳 , 边鹏 , 江升旗 , 刘伟 . 桦树茸多糖羧甲基化修饰工艺优化、理化性质及降糖活性研究[J]. 食品与发酵工业, 2025 , 51(4) : 244 -254 . DOI: 10.13995/j.cnki.11-1802/ts.039134

Abstract

Inonotuso bliquus was used as the raw material to prepare crude polysaccharides.Subsequently, carboxymethyl Inonotuso bliquus polysaccharide (CM-IBP) was synthesized through the sodium hydroxide-chloroacetic acid reaction method after purification (IBP).The carboxymethyl polysaccharide methylation modification process was optimized using both single-factor and response surface methods.Comparative studies were conducted on the physical and chemical properties as well as the in vitro hypoglycemic activity of the modified polysaccharide.Results revealed that the optimal modification process involved an alkalization temperature of 51 ℃, 2.3% chloroacetic acid addition, and a reaction time of 4 h, resulting in a substitution degree of 0.312.The viscosities of IBP and CM-IBP were 3 298 and 2 984 mPa·s, respectively, while their solubilities were 59.54 and 86.32 mg/mL, respectively.The protein and sugar aldehyde contents decreased in both IBP and CM-IBP.Both IBP and CM-IBP consisted of Fuc, Ara, Xyl, Man, Glc, and Gal, but the proportion of these monosaccharides varied.Various tests, including ultraviolet, infrared spectroscopy, Congo red experiment, X-ray diffraction, scanning electron microscope, and energy spectroscopy, demonstrated that CM-IBP exhibited typical characteristic absorption of carboxymethylated polysaccharides and the carboxymethylation modification altered the spatial morphology of the polysaccharides.Thermal stability experiments (thermogravimetry, derivative thermogravimetry, differential scanning calorimetry) indicated that CM-IBP exhibited better thermal stability than IBP, and both IBP and CM-IBP remained stable below 230 ℃.The IC50 of IBP and CM-IBP on α-glucosaminidase was 2.64 and 1.0 mg/mL, respectively, and on α-amylase was 3.68 and 2.29 mg/mL, respectively. When the mass concentration was 5 mg/mL, the inhibition rate of α-glucosaminidase and α-amylase by modified CM-IBP was about 20% higher than that of IBP, indicating that both had hypoglycemic activity in vitro, and CM-IBP was superior to IBP in hypoglycemic activity in vitro.The results could provide a basis for further research on the conformational relationship of Inonotuso bliquus polysaccharides and the development of potential medicinal and food products, as well as a theoretical reference for polysaccharide modification research.

参考文献

[1] THI THUY VAN N, GASPILLO P A, THANH H G T, et al. Cellulose from the banana stem: Optimization of extraction by response surface methodology (RSM) and charaterization[J]. Heliyon, 2022, 8(12): e11845.
[2] 肖芳, 陈涛, 伍振煌, 等. 植物多糖的提取工艺、生物学功能及其在动物生产中的研究进展[J]. 饲料研究, 2022, 45(14):125-128.
XIAO F, CHEN T, WU Z H, et al. Research progress on extraction technology, biological function and animal production of plant polysaccharides[J]. Feed Research, 2022, 45(14):125-128.
[3] 孔志强, 赵玉红. 沙棘降解多糖结构表征和功能特性研究[J]. 食品科学技术学报, 2023, 41(6):65-74; 138.
KONG Z Q, ZHAO Y H. Structural characterization and functional properties of sea buckthorn degraded polysaccharides[J]. Journal of Food Science and Technology, 2023, 41(6):65-74; 138.
[4] 杨艺, 赵媛, 孙纪录, 等. 化学修饰多糖的方法及生物活性研究进展[J]. 食品工业科技, 2023, 44(11):468-479.
YANG Y, ZHAO Y, SUN J L, et al. Research progress on chemical modification methods of polysaccharides and their biological activity[J]. Science and Technology of Food Industry, 2023, 44(11):468-479.
[5] 陈栅, 冯润芳, 袁野, 等. 酸枣多糖羧甲基化修饰及活性研究[J]. 中国食品学报, 2022, 22(4):55-66.
CHEN S, FENG R F, YUAN Y, et al. Studies on carboxy methylation modification and activity of wild jujube polysaccharide[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(4):55-66.
[6] 黄馨阅, 丁慧敏, 马士玄, 等. 红须腹菌多糖的提取、羧甲基化修饰及免疫活性研究[J]. 南京师大学报(自然科学版), 2023, 46(3):60-68.
HUANG X Y, DING H M, MA S X, et al. Extraction, carboxymethylation modification and in vivo immunomodulatory effects of polysaccharides from Rhizopogon rubescens(tul.)tul[J]. Journal of Nanjing Normal University (Natural Science Edition), 2023, 46(3):60-68.
[7] HORI I, HARASHIMA H, YAMADA Y. Development of a mitochondrial targeting lipid nanoparticle encapsulating berberine[J]. International Journal of Molecular Sciences, 2023, 24(2):903.
[8] 韩增华, 王玉霞, 戴肖东, 等. 高三萜含量桦褐孔菌菌核栽培[J]. 食用菌学报, 2022, 29(5):65-72.
HAN Z H, WANG Y X, DAI X D, et al. Cultivation of Inonotus obliquus Sclerotium with high triterpene content by methyl jasmonate elicitation[J]. Acta Edulis Fungi, 2022, 29(5):65-72.
[9] HU Y, SHENG Y, YU M, et al. Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice[J]. International Journal of Biological Macromolecules, 2016, 87:348-356.
[10] HAN Y Q, NAN S J, FAN J, et al. Inonotus obliquus polysaccharides protect against Alzheimer's disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects[J]. International Journal of Biological Macromolecules, 2019, 131:769-778.
[11] CHEN Y F, ZHENG J J, QU C, et al. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1):757-766.
[12] 于方园, 胡淼, 门雨薇, 等. 桦褐孔菌多糖磷酸化修饰工艺研究[J]. 食品研究与开发, 2022, 43(12):133-138.
YU F Y, HU M, MEN Y W, et al. Phosphorylation modification process of Inonotus obliquus polysaccharides[J]. Food Research and Development, 2022, 43(12):133-138.
[13] 邵珠领, 吴艳丽, 张宇, 等. 桦褐孔菌多糖的乙酰化修饰及其抗氧化活性[J]. 食品工业科技, 2019, 40(9):73-77.
SHAO Z L, WU Y L, ZHANG Y, et al. Acetylated modification and antioxidant activity of polysaccharides from Inonotus obliquus[J]. Science and Technology of Food Industry, 2019, 40(9):73-77.
[14] 杨嘉欣, 李瑶, 黄显健, 等. 海带多糖羧甲基化修饰工艺优化及其生物活性研究[J]. 食品与发酵工业, 2024, 50(18):115-122.
YANG J X, LI Y, HUANG X J, et al. Optimization of carboxymethylation modification process and study on biological activity of Laminaria japonica polysaccharide[J]. Food and Fermentation Industries, 2024, 50(18):115-122.
[15] 任冰, 唐洪彬, 蒋德祥, 等. 静态平衡法测定甲基膦酸二甲庚酯在酸性溶液中的溶解度[J]. 核化学与放射化学, 2019, 41(3):272-277.
REN B, TANG H B, JIANG D X, et al. Determination of solubility of di(1-methyl-heptyl) methyl phosphonate in acidic solution by static equilibrium method[J]. Journal of Nuclear and Radiochemistry, 2019, 41(3):272-277.
[16] YANG M Y, BELWAL T, DEVKOTA H P, et al. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review[J]. Trends in Food Science & Technology, 2019, 92:94-110.
[17] NUERXIATI R, ABUDUWAILI A, MUTAILIFU P, et al. Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep)[J]. International Journal of Biological Macromolecules, 2019, 141:431-443.
[18] 马永强, 张一鹏, 王鑫, 等. 黄精多糖羧甲基化修饰及其抗氧化活性研究[J]. 中国食品添加剂, 2023, 34(6):38-47.
MA Y Q, ZHANG Y P, WANG X, et al. Carboxymethylation modification of Polygonatum polysaccharide and its antioxidant activity[J]. China Food Additives, 2023, 34(6):38-47.
[19] 慈璐雨, 倪天颖, 蓝蔚冰. 羧甲基化和磷酸化凝胶多糖的制备及结构与抗氧化活性对比分析研究[J]. 食品与发酵工业, 2024, 50(16):249-255.
CI L Y, NI T Y, LAN W B. Comparative analysis of preparation, structure, and antioxidant activity of carboxymethylated and phosphorylated curdlan[J]. Food and Fermentation Industries, 2024, 50(16):249-255.
[20] GAO Y L, ABUDUAINI G, YANG C H, et al. Isolation, purification, and structural elucidation of Stropharia rugosoannulata polysaccharides with hypolipidemic effect[J]. Frontiers in Nutrition, 2022, 9:1092582.
[21] PAULO F, TAVARES L, SANTOS L. Response surface modeling and optimization of the extraction of phenolic antioxidants from olive mill pomace[J]. Molecules, 2022, 27(23):8620.
[22] ZHAO X Y, LI J Y, LIU Y Q, et al. Structural characterization and immunomodulatory activity of a water soluble polysaccharide isolated from Botrychium ternatum[J]. Carbohydrate Polymers, 2017, 171:136-142.
[23] 苗兰宁, 贺奕森, 唐涛, 等. 羧甲基化沙棘多糖钙螯合物稳定性的探究[J]. 中国食品工业, 2023(3): 95-97.
MIAO L N, HE Y S, TANG T, et al. Investigation of the stability of calcium chalates of carboxymethylated sea buckthorn polysaccharides[J]. China Food Industry, 2023(3): 95-97.
[24] ZHENG P Z, CAI D X, ZHAO J H, et al. Thermodynamic properties of mixed surfactants of dodecyltrimethylammonium bromide and 1-dodecyl-3-methylimidazolium bromide[J]. The Journal of Chemical Thermodynamics, 2017, 113:394-398.
[25] PRICE N P, LABEDA D P, NAUMANN T A, et al. Quinovosamycins: New tunicamycin-type antibiotics in which the α, β-1″, 11′-linked N-acetylglucosamine residue is replaced by N-acetylquinovosamine[J]. Journal of Antibiotics, 2016, 69(8):637-646.
[26] 郝辉, 龚梅秋, 刘远上, 等. 甜茶多糖的提取、羧甲基化修饰及抗氧化活性研究[J]. 陕西农业科学, 2022, 68(11):37-42.
HAO H, GONG M Q, LIU Y S, et al. Study on extraction, carboxymethylation and antioxidant activity of sweet tea polysaccharide[J]. Shaanxi Journal of Agricultural Sciences, 2022, 68(11):37-42.
[27] AN Y Z, LIU H T, LI X X, et al. Carboxymethylation modification, characterization, antioxidant activity and anti-UVC ability of Sargassum fusiforme polysaccharide[J]. Carbohydrate Research, 2022, 515:108555.
[28] ABUDUWAILI A, NUERXIATI R, MUTAILIFU P, et al. Isolation, structural modification, characterization, and bioactivity of polysaccharides from Folium Isatidis[J]. Industrial Crops and Products, 2022, 176:114319.
[29] 邢慧珍, 张玉梅, 刘会平, 等. 淡竹叶多糖的制备、热稳定性及其抗氧化活性[J]. 食品研究与开发, 2023, 44(19):86-96.
XING H Z, ZHANG Y M, LIU H P, et al. Preparation, thermal stability and antioxidant activity of polysaccharide from Lophatherum gracile brongn[J]. Food Research and Development, 2023, 44(19):86-96.
[30] 李文文, 蔺永刚, 边鹏, 等. 新疆藁本多糖的提取、理化性质与生物活性[J]. 精细化工, 2024, 41(9):1966-1977; 2081.
LI W W, LIN Y G, BIAN P, et al. Extraction, physicochemical properties and bioactivities of polysaccharides from Conioselinum vaginatium[J]. Fine Chemicals, 2024, 41(9):1966-1977; 2081.
[31] CHEN X Y, JI H Y, ZHANG C F, et al. Optimization of extraction process from Taraxacum officinale polysaccharide and its purification, structural characterization, antioxidant and anti-tumor activity[J]. Journal of Food Measurement and Characterization, 2020, 14(1):194-206.
[32] DONG R H, TIAN J L, HUANG Z Y, et al. Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermostability and antioxidant abilities[J]. Food Chemistry, 2023, 410:135375.
文章导航

/