基于酿酒酵母孢子表面展示系统,实现聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)水解酶FAST-PETase的孢子固定化。使用整合型质粒pRS306-TEF1pr-ss-FAST-PETase,将编码FAST-PETase的基因插入到酿酒酵母dit1Δ缺陷型菌株的基因组中,使蛋白更加稳定的表达。以双-2-(羟乙基)对苯二甲酸酯[bis(2-hydroxyethyl) terephthalate,BHET]为底物,对孢子固定化FAST-PETase的最适反应条件、热稳定性、pH耐受性、洗涤剂/有机试剂耐受性和重复使用能力进行研究。孢子固定化FAST-PETase的最适反应条件为50 ℃,pH 8.0。在30~80 ℃孵育12 h后,能保留82%以上的活性。同样地,在pH 5.0~9.0孵育12 h后,也能保持78%以上的活性。与游离酶相比,孢子固定化FAST-PETase对有机试剂也有一定的抗性,在重复使用7次后仍然保留初始活性的35%。该研究利用酿酒酵母孢子表面展示系统成功实现孢子固定化FAST-PETase,并将其应用于BHET的水解中,为PET塑料的长期降解提供了新的平台。
Based on the surface display system of Saccharomyces cerevisiae spores, the immobilization of polyethylene terephthalate (PET) hydrolase FAST-PETase was achieved.By using the integrated plasmid pRS306-TEF1pr-ss-FAST-PETase, the gene encoding FAST-PETase was inserted into the genome of the dit1Δ defective strain of S.cerevisiae to enable more stable protein expression.Using bis(2-hydroxyethyl) terephthalate (BHET) as the substrate, the optimal reaction conditions, thermal stability, pH tolerance, detergent/organic reagent tolerance, and reusability of spore-immobilized FAST-PETase were studied.The optimal reaction conditions for spore-immobilized FAST-PETase were 50 ℃ and pH 8.0.After incubation at temperatures ranging from 30 ℃ to 80 ℃ for 12 h, more than 82% of the original activity could be retained.Similarly, after incubation at pH 5.0-9.0 for 12 h, more than 78% of the original activity could be maintained.Compared with the free enzyme, spore-immobilized FAST-PETase also showed resistance to organic reagents, retaining 35% of its initial activity after seven reuse cycles.In this study, the immobilization of FAST-PETase was successfully realized by using the spore surface display system of S.cerevisiae and applied to the hydrolysis of BHET, providing a new platform for the long-term degradation of PET plastics.
[1] Plastics European.Plastics—The fast facts 2023[EB/OL].(2024-01-23)[2024-02-20].https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/.
[2] SAMAK N A, JIA Y P, SHARSHAR M M, et al.Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling[J].Environment International, 2020, 145:106144.
[3] LEBRETON L, ANDRADY A.Future scenarios of global plastic waste generation and disposal[J].Palgrave Communications, 2019, 5(1):6.
[4] SINHA V, PATEL M R, PATEL J V.Pet waste management by chemical recycling:A review[J].Journal of Polymers and the Environment, 2010, 18(1):8-25.
[5] CHEN K, QUAN M Q, DONG X Y, et al.Low modification of PETase enhances its activity toward degrading PET:Effect of conjugate monomer property[J].Biochemical Engineering Journal, 2021, 175:108151.
[6] TANIGUCHI I, YOSHIDA S, HIRAGA K, et al.Biodegradation of PET:Current status and application aspects[J].ACS Catalysis, 2019, 9(5):4089-4105.
[7] DAMAYA N, WU H S.Strategic possibility routes of recycled PET[J].Polymers, 2021, 13(9):1475.
[8] GEYER B, LORENZ G, KANDELBAUER A.Recycling of poly(ethylene terephthalate)-A review focusing on chemical methods[J].Express Polymer Letters, 2016, 10(7):559-586.
[9] WEI R, ZIMMERMANN W.Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate[J].Microbial Biotechnology, 2017, 10(6):1302-1307.
[10] CARNIEL A, DE ABREU WALDOW V, DE CASTRO A M.A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes[J].Biotechnology Advances, 2021, 52:107811.
[11] YANG Y, YANG J, JIANG L.Comment on “a bacterium that degrades and assimilates poly(ethylene terephthalate)”[J].Science, 2016, 353(6301):759.
[12] SON H F, CHO I J, JOO S, et al.Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation[J].ACS Catalysis, 2019, 9(4):3519-3526.
[13] BROTT S, PFAFF L, SCHURICHT J, et al.Engineering and evaluation of thermostable Is PETase variants for PET degradation[J].Engineering in Life Sciences, 2021, 22(3-4):192-203.
[14] MENG X X, YANG L X, LIU H Q, et al.Protein engineering of stable IsPETase for PET plastic degradation by Premuse[J].International Journal of Biological Macromolecules, 2021, 180:667-676.
[15] AUSTIN H P, ALLEN M D, DONOHOE B S, et al.Characterization and engineering of a plastic-degrading aromatic polyesterase[J].Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19):E4350-E4357.
[16] CHEN K, HU Y, DONG X Y, et al.Molecular insights into the enhanced performance of EKylated PETase toward PET degradation[J].ACS Catalysis, 2021, 11(12):7358-7370.
[17] HAN W, ZHANG J, CHEN Q, et al.Biodegradation of poly (ethylene terephthalate) through PETase surface-display:From function to structure[J].Journal of Hazardous Materials, 2024, 461:132632.
[18] CHEN Z Z, WANG Y Y, CHENG Y Y, et al.Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase[J].Science of the Total Environment, 2020, 709:136138.
[19] LU H Y, DIAZ D J, CZARNECKI N J, et al.Machine learning-aided engineering of hydrolases for PET depolymerization[J].Nature, 2022, 604(7907):662-667.
[20] RODRIGUES R C, ORTIZ C, BERENGUER-MURCIA Á, et al.Modifying enzyme activity and selectivity by immobilization[J].Chemical Society Reviews, 2013, 42(15):6290-6307.
[21] LI Z D, YEH M.Construction and diversity analysis of a murine IgE phage surface display library[J].Cell Research, 1997, 7(2):161-170.
[22] CHEN Y L, LING Z M, MAMTIMIN T, et al.Chitooligosaccharides production from shrimp chaff in chitosanase cell surface display system[J].Carbohydrate Polymers, 2022, 277:118894.
[23] KAJIWARA K, AOKI W, KOIKE N, et al.Development of a yeast cell surface display method using the SpyTag/SpyCatcher system[J].Scientific Reports, 2021, 11(1):11059.
[24] LIN P, YUAN H B, DU J K, et al.Progress in research and application development of surface display technology using Bacillus subtilis spores[J].Applied Microbiology and Biotechnology, 2020, 104(6):2319-2331.
[25] LI Z J, LI W J, WANG Y S, et al.Establishment of a novel cell surface display platform based on natural "chitosan beads" of yeast spores[J].Journal of Agricultural and Food Chemistry, 2022, 70(24):7479-7489.