研究报告

基于体外发酵研究脱镁叶绿素对高脂饮食诱导小鼠肠道菌群的调节作用

  • 曾全恒 ,
  • 王元楷 ,
  • 周纯洁 ,
  • 陈玉瑶 ,
  • 庄子越 ,
  • 张文华 ,
  • 蔡甜 ,
  • 陈科伟
展开
  • 1(西南大学 食品科学学院,重庆,400715)
    2(中匈食品科学合作研究中心,重庆,400715)
    3(重庆市食品药品检验检测研究院,重庆,401121)
    4(国家市场监管重点实验室(调味品监管技术),重庆,401121)
    5(西南大学 化学化工学院,重庆,400715)
    6(川渝共建特色食品重庆市重点实验室,重庆,400715)
第一作者:硕士研究生(陈科伟副教授和蔡甜讲师为共同通信作者,E-mail:chenkewei@swu.edu.cn;caitian@swu.edu.cn)

收稿日期: 2024-02-20

  修回日期: 2024-04-26

  网络出版日期: 2025-03-28

基金资助

国家重点研发计划项目(2023YFE0116100);重庆市科委基础研究与前沿探索项目(CSTB2022NSCQ-MSX0633);西南大学创新研究2035先导计划重点项目(SWU-XDZD22007)

The regulating effect of pheophytins on mice gut microflora induced with high-fat diet based on in vitro fermentation

  • ZENG Quanheng ,
  • WANG Yuankai ,
  • ZHOU Chunjie ,
  • CHEN Yuyao ,
  • ZHUANG Ziyue ,
  • ZHANG Wenhua ,
  • CAI Tian ,
  • CHEN Kewei
Expand
  • 1(College of Food Science, Southwest University, Chongqing 400715, China)
    2(Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, China)
    3(Chongqing Institute for Food and Drug Control, Chongqing 401121, China)
    4(Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China)
    5(School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China)
    6(Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China)

Received date: 2024-02-20

  Revised date: 2024-04-26

  Online published: 2025-03-28

摘要

叶绿素可以影响高脂饮食诱导的肠道菌群结构,缓解肥胖和改善炎症,但相关作用还需要深入探究。该研究采用体外厌氧模式,向高脂饮食诱导的小鼠粪便肠道菌群中添加脱镁叶绿素,进一步探究脱镁叶绿素对高脂饮食诱导的肠道菌群调节作用。发酵48 h后,运用16S rRNA微生物组学,超高效液相色谱/四极杆飞行时间质谱靶向测定短链脂肪酸,非靶向代谢组学研究脱镁叶绿素a和脱镁叶绿酸a,对上述小鼠肠道菌群的调节作用。结果表明,相比于空白组,脱镁叶绿素组在门水平上能够降低变形菌门(Proteobacteria)丰度,提高厚壁菌门(Firmicutes)丰度,属水平上显著抑制致病菌(P<0.05)埃希氏-志贺菌属(Escherichia-Shigella)丰度。短链脂肪酸测定结果表明,脱镁叶绿素能促进高脂饮食诱导的肠道菌群产生短链脂肪酸,其中乙酸、丙酸、丁酸含量显著提升(P<0.05)。非靶向代谢组学分析显示,高脂粪菌受到脱镁叶绿素额外作用后可产生脂类化合物、氨基衍生物、胆汁酸盐等代谢物,并且还能产生抗生素类物质(istamycin AO、夫西地酸、庆大霉素C1等)。综上,脱镁叶绿素能够调节高脂饮食诱导的肠道菌群结构与代谢,对机体健康具有潜在有益影响。

本文引用格式

曾全恒 , 王元楷 , 周纯洁 , 陈玉瑶 , 庄子越 , 张文华 , 蔡甜 , 陈科伟 . 基于体外发酵研究脱镁叶绿素对高脂饮食诱导小鼠肠道菌群的调节作用[J]. 食品与发酵工业, 2025 , 51(5) : 126 -133 . DOI: 10.13995/j.cnki.11-1802/ts.038919

Abstract

Chlorophyll could influence the structure of gut microflora induced with high-fat diet, alleviating obesity and improving inflammation, but the related effects still need further exploration.This research employed an in vitro anaerobic model to introduce pheophytins into the fecal microflora of mice which fed with high-fat diet, thereby delving deeper into the regulatory effect of pheophytins on the high fat diet induced microflora.After 48 hours of fermentation, we conducted the 16S rRNA microbiome, targeted metabolomics of short-chain fatty acids and untargeted metabolomics with ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.The object was to examine the regulatory effects of pheophytin a and pheophorbide a on the microflora of the high fat diet induced mice.The results indicated that compared to the control group, the group treated with pheophytins could reduce the abundance of Proteobacteria at the phylum level and increase the abundance of Firmicutes.At the genus level, it significantly inhibited the abundance of the pathogen Escherichia-Shigella (P<0.05).The determination of short-chain fatty acids revealed that pheophytins could promote the high fat induced microflora to produce the short-chain fatty acids, of which acetic acid,propionic acid and butyric acid contents increased significantly (P<0.05).Untargeted metabolomics analysis showed that extra pheophytins affected the high-fat diet induced microflora by producing lipoid substance, amino derivatives, bile acid salt and antibiotic substances (istamycin AO, fusidic acid, gentamicin C1…).Overall, pheophytins have the potential to regulate the structure and metabolism of high-fat diet induced microflora, with potential beneficial effects on overall health.

参考文献

[1] BRAY G A, KIM K K, WILDING J P H, et al.Obesity:A chronic relapsing progressive disease process.A position statement of the World Obesity Federation[J].Obesity Reviews, 2017, 18(7):715-723.
[2] 胡俐泉,屠琳玥,赵悦伶,等.西湖龙井茶对高脂高果糖饮食小鼠肠道菌群的调节作用[J].浙江大学学报(农业与生命科学版),2024,50(3):481-494.
HU L Q, TU L Y, ZHAO Y L, et al. Regulatory effects of Xihu Longjing on the intestinal flora of mice fed on the high-fat and high-fructose diet[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024,50(3):481-494.
[3] BELKAID Y, HAND T W.Role of the microbiota in immunity and inflammation[J].Cell, 2014, 157(1):121-141.
[4] DE VOS W M, TILG H, VAN HUL M, et al.Gut microbiome and health:Mechanistic insights[J].Gut, 2022, 71(5):1020-1032.
[5] FAN Y, PEDERSEN O.Gut microbiota in human metabolic health and disease[J].Nature Reviews.Microbiology, 2021, 19(1):55-71.
[6] LI Y Y, LU F, WANG X, et al.Biological transformation of chlorophyll-rich spinach (Spinacia oleracea L.) extracts under in vitro gastrointestinal digestion and colonic fermentation[J].Food Research International, 2021, 139:109941.
[7] MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIÈRE H M, et al.SCFA:Mechanisms and functional importance in the gut[J].Proceedings of the Nutrition Society, 2021, 80(1):37-49.
[8] LI Y Y, CUI Y, LU F, et al.Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice[J].Journal of Functional Foods, 2019, 60:103436.
[9] SEMAAN D G, IGOLI J O, YOUNG L, et al.In vitro anti-diabetic effect of flavonoids and pheophytins from Allophylus cominia Sw.on the glucose uptake assays by HepG2, L6, 3T3-L1 and fat accumulation in 3T3-L1 adipocytes[J].Journal of Ethnopharmacology, 2018, 216:8-17.
[10] LI Y Y, CAO J R, ZHENG H L, et al.Transformation pathways and metabolic activity of free chlorophyll compounds from chloroplast thylakoid membrane under in vitro gastrointestinal digestion and colonic fermentation in early life[J].Food Bioscience, 2021, 42:101196.
[11] CHEN K W, ROCA M.In vitro digestion of chlorophyll pigments from edible seaweeds[J].Journal of Functional Foods, 2018, 40:400-407.
[12] LI Y C, AGARRY I E, DING D S, et al.Screening of dephytinization reaction of chlorophyll pigments with Citrus acetone powder by UPLC-DAD-MS[J].Journal of Food Science, 2023, 88(1):147-160.
[13] FENG J C, WANG J, BU T T, et al.Structural, in vitro digestion, and fermentation characteristics of Lotus leaf flavonoids[J].Food Chemistry, 2023, 406:135007.
[14] VIERA I, CHEN K W, RíOS J J, et al.First-pass metabolism of chlorophylls in mice[J].Molecular Nutrition & Food Research, 2018, 62(17):e1800562.
[15] AGARRY I E, DING D S, LI Y C, et al.In vitro bioaccessibility evaluation of chlorophyll pigments in single and binary carriers[J].Food Chemistry, 2023, 415:135757.
[16] MENG X J, PANG H H, SUN F, et al.Simultaneous 3-nitrophenylhydrazine derivatization strategy of carbonyl, carboxyl and phosphoryl submetabolome for LC-MS/MS-based targeted metabolomics with improved sensitivity and coverage[J].Analytical Chemistry, 2021, 93(29):10075-10083.
[17] CHAN Y T, HUANG J T, WONG H C, et al.Metabolic fate of black raspberry polyphenols in association with gut microbiota of different origins in vitro[J].Food Chemistry, 2023, 404:134644.
[18] FERNANDES A S, NASCIMENTO T C, PINHEIRO P N, et al.Insights on the intestinal absorption of chlorophyll series from microalgae[J].Food Research International, 2021, 140:110031.
[19] GANDUL-ROJAS B, GALLARDO-GUERRERO L, ISABEL MíNGUEZ-MOSQUERA M.Influence of the chlorophyll pigment structure on its transfer from an oily food matrix to intestinal epithelium cells[J].Journal of Agricultural and Food Chemistry, 2009, 57(12):5306-5314.
[20] CHEN L, WANG Y X, LIU J X, et al.Structural characteristics and in vitro fermentation patterns of polysaccharides from Boletus mushrooms[J].Food & Function, 2023, 14(17):7912-7923.
[21] FU X, CAO C L, REN B B, et al.Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota[J].Carbohydrate Polymers, 2018, 183:230-239.
[22] KUDO F, EGUCHI T.Biosynthetic genes for aminoglycoside antibiotics[J].Journal of Antibiotics, 2009, 62(9):471-481.
[23] 张雷, 蔡芸, 王睿.米诺环素与夫西地酸对98株耐甲氧西林金黄色葡萄球菌的联合药敏研究[J].中国临床药理学杂志, 2011, 27(8):587-589.
ZHANG L, CAI Y, WANG R.Antibacterial activity of minocycline in combination with fusidic acid against 98 strains of methicillin-residtant Staphylococcus aureus in vitro[J].The Chinese Journal of Clinical Pharmacology, 2011, 27(8):587-589.
[24] 李帆, 张伟, 丁文渊.庆大霉素等抗菌药物在大肠杆菌培养基中的抑菌效果[J].宜春学院学报, 2018, 40(12):62-64;75.
LI F, ZHANG W, DING W Y.Antibacterial effect of gentamycin and other antibiotics in agar medium for Escherichia coli[J].Journal of Yichun University, 2018, 40(12):62-64;75.
文章导航

/