研究报告

嗜酸乳杆菌L-55菌株对豆乳发酵过程中大豆异黄酮转化为雌激素样物质的影响

  • 王佳玉
展开
  • (日本冈山大学 环境生命科学系,日本 冈山,7008530)
第一作者:硕士研究生(本文通信作者,E-mail:wangjiayu1023@icloud.com)

收稿日期: 2024-10-28

  修回日期: 2024-11-20

  网络出版日期: 2025-03-28

Effect of Lactobacillus acidophilus L-55 on conversion of soy isoflavones to estrogen-like substances during soy milk fermentation

  • WANG Jiayu
Expand
  • (Department of Environmental and Life Sciences, Okayama University, Okayama 7008530, Japan)

Received date: 2024-10-28

  Revised date: 2024-11-20

  Online published: 2025-03-28

摘要

该研究探讨了嗜酸乳杆菌L-55菌株在豆乳发酵过程中大豆异黄酮转化为雌激素样物质所发挥的作用。将嗜酸乳杆菌(Lactobacillus acidophilus)L-55菌株和市售酸奶中提取获得的2种乳酸菌[唾液链球菌嗜热亚种(Streptococcus salivarius subsp. thermophilus)和德氏乳杆菌保加利亚亚种(Lactobacillus delbrueckii subsp.bulgaricus)]分别接种至灭菌的豆乳中,并于37 ℃下培养24 h,在培养结束后,使用高效液相色谱法内标法测定豆乳酸奶中大豆苷元、染料木黄酮、雌马酚、5-羟基-雌马酚4种苷元型异黄酮的含量;利用嗜酸乳杆菌L-55菌株的基因组信息,研究其与多种雌激素样物质转化能力相关的基因群。结果表明,在嗜酸乳杆菌L-55菌株发酵的豆乳酸奶中检测到的大豆苷元含量为0.74 mg/100 mL,染料木黄酮含量为2.35 mg/100 mL,而在其他2种乳酸菌发酵的豆乳酸奶中均未大量检测到这2种物质;3种乳酸菌发酵的豆乳酸奶中均未大量检测到具有雌激素样活性的雌马酚和5-羟基-雌马酚;嗜酸乳杆菌L-55菌株发酵的豆乳酸奶中苷元型异黄酮含量为3.29 mg/100 mL,显著高于其他2种乳酸菌发酵的豆乳酸奶中苷元型异黄酮的含量。基因组分析表明,L-55菌株的基因组信息中未编码雌马酚还原酶基因和5-羟基-雌马酚还原酶基因,这与样品中未大量检测到雌马酚、5-羟基-雌马酚这2种物质的结果一致。此外,由于缺乏这些基因,作为雌马酚和5-羟基-雌马酚重要前体物质的大豆苷元和染料木黄酮的积累也得到了验证。综上所述,由于L-55菌株具有将大豆异黄酮转化为大豆苷元和染料木黄酮的能力,因此可以预见通过L-55菌株制造含有雌激素样物质(雌激素活性)的豆乳酸奶的可能性。

本文引用格式

王佳玉 . 嗜酸乳杆菌L-55菌株对豆乳发酵过程中大豆异黄酮转化为雌激素样物质的影响[J]. 食品与发酵工业, 2025 , 51(5) : 172 -181 . DOI: 10.13995/j.cnki.11-1802/ts.041440

Abstract

This study investigated the role of the Lactobacillus acidophilus L-55 in converting soy isoflavones into estrogen-like substances during the fermentation of soy milk.Sterilized soy milk was inoculated with the L-55 strain of L. acidophilus, as well as two other lactic acid bacteria extracted from commercially available yogurt (Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp.bulgaricus), and cultured at 37 ℃ for 24 hours.At the end of the fermentation, the levels of four glycoside-type isoflavones, including daidzein, genistein, equol, and 5-hydroxy-equol, were measured using HPLC with internal standard methodology.Additionally, the genomic information of the L-55 strain was used to study gene clusters associated with the conversion of various estrogen-like substances.Results showed that the content of daidzein in soy yogurt fermented by the L-55 strain was 0.74 mg/100 mL, and the genistein content was 2.35 mg/100 mL, while these substances were not detected in significant amounts in soy yogurt fermented by the other two lactic acid bacteria.No substantial amounts of the estrogen-like substances equol and 5-hydroxy-equol were detected in any of the three soy yogurt samples.The total glycoside-type isoflavone content in soy yogurt fermented by the L-55 strain was 3.29 mg/100 mL, significantly higher than that in soy yogurt fermented by the other two strains.Genomic analysis revealed that the genome of the L-55 strain did not encode the genes for equol reductase and 5-hydroxy-equol reductase, consistent with the lack of significant detection of these two compounds in the samples.Furthermore, the accumulation of daidzein and genistein, important precursor substances for equol and 5-hydroxy-equol, was also confirmed due to the absence of these genes.In conclusion, since the L-55 strain can convert soy isoflavones into daidzein and genistein, it is possible to use this strain to produce soy yogurt containing estrogen-like substances (with estrogenic activity).

参考文献

[1] RASTALL R A.Bacteria in the gut:Friends and foes and how to alter the balance[J].The Journal of Nutrition, 2004, 134(8):2022S-2026S.
[2] SUNADA Y, NAKAMURA S, KAMEI C.Effect of Lactobacillus acidophilus strain L-55 on the development of atopic dermatitis-like skin lesions in NC/Nga mice[J].International Immunopharmacology, 2008, 8(13-14):1761-1766.[LinkOut]
[3] MEYDANI S N, HA W K.Immunologic effects of yogurt[J].The American Journal of Clinical Nutrition, 2000, 71(4):861-872.
[4] RUIZ RODRíGUEZ L G, MOHAMED F, BLECKWEDEL J, et al.Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina[J].Frontiers in Microbiology, 2019, 10:1091.
[5] SUNADA Y, NAKAMURA S, KAMEI C.Effects of Lactobacillus acidophilus strain L-55 on experimental allergic rhinitis in BALB/c mice[J].Biological & Pharmaceutical Bulletin, 2007, 30(11):2163-2166.
[6] KIMURA G, AKAGI H, OKADA C, et al.Clinical effects of Lactobacillus acidophilus strain L-55-contained yogurt on symptoms of Japanese cedar pollen allergy[J].Arerugi =[Allergy], 2012, 61(5):628-641.
[7] HO D T, HATABU T, SUNADA Y, et al.Oral administration of the probiotic bacterium Lactobacillus acidophilus strain L-55 modulates the immunological parameters of the laying hen inoculated with a Newcastle disease virus-based live attenuated vaccine[J].Bioscience of Microbiota, Food and Health, 2020, 39(3):117-122.
[8] PHAM H H S, FUJII Y, ARAKAWA K, et al.Differential effects of orally administered Lactobacillus acidophilus L-55 on the gene expression of cytokines and master immune switches in the ileum and spleen of laying hen with an attenuated Newcastle disease virus vaccine[J].Bioscience of Microbiota, Food and Health, 2022, 41(1):12-19.
[9] SUNADA Y.Effects of Lactobacillus acidophilus strain L-55 on viral infection[J].Milk Science, 2013, 62(3):139-142.
[10] KAUFMAN P B, DUKE J A, BRIELMANN H, et al.A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein:Implications for human nutrition and health[J].Journal of Alternative and Complementary Medicine, 1997, 3(1):7-12.
[11] MURPHY P A, BARUA K, HAUCK C C.Solvent extraction selection in the determination of isoflavones in soy foods[J].Journal of Chromatography B, 2002, 777(1-2):129-138.
[12] WANG H, MURPHY P A.Isoflavone content in commercial soybean foods[J].Journal of Agricultural and Food Chemistry, 1994, 42(8):1666-1673.
[13] OSENI T, PATEL R, PYLE J, et al.Selective estrogen receptor modulators and phytoestrogens[J].Planta Medica, 2008, 74(13):1656-1665.
[14] SETCHELL K D R, BROWN N M, LYDEKING-OLSEN E.The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones[J].The Journal of Nutrition, 2002, 132(12):3577-3584.
[15] 赵晓佳, 李易聪, 王秀伶.大豆异黄酮微生物转化研究进展[J].微生物学报, 2020, 60(2):211-226.
ZHAO X J, LI Y C, WANG X L.Progress in microbial conversion of soy isoflavones[J].Acta Microbiologica Sinica, 2020, 60(2):211-226.
[16] RUIZ DE LA BASTIDA A, PEIROTÉN Á, LANGA S, et al.Heterologous production of equol by lactic acid bacteria strains in culture medium and food[J].International Journal of Food Microbiology, 2021, 360:109328.
[17] PEI X, ZHAO J Q, CAI P L, et al.Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides[J].Protein Expression and Purification, 2016, 119:75-84.
[18] WANG X L, HUR H G, LEE J H, et al.Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium[J].Applied and Environmental Microbiology, 2005, 71(1):214-219.
[19] SHIMADA Y, TAKAHASHI M, MIYAZAWA N, et al.Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol from daidzein in Lactococcus sp.strain 20-92[J].Applied and Environmental Microbiology, 2012, 78(14):4902-4907.
[20] TOH H, OSHIMA K, SUZUKI T, et al.Complete genome sequence of the equol-producing bacterium Adlercreutzia equolifaciens DSM 19450T[J].Genome Announcements, 2013, 1(5):e00742-13.
[21] MISSELWITZ B, BUTTER M, VERBEKE K, et al.Update on lactose malabsorption and intolerance:Pathogenesis, diagnosis and clinical management[J].Gut, 2019, 68(11):2080-2091.
[22] HIDALGO-FUENTES B, DE JESÚS-JOSÉ E, CABRERA-HIDALGO A J, et al.Plant-based fermented beverages:Nutritional composition, sensory properties, and health benefits[J].Foods, 2024, 13(6):844.
[23] SAVAIANO D A, HUTKINS R W.Yogurt, cultured fermented milk, and health:A systematic review[J].Nutrition Reviews, 2021, 79(5):599-614.
[24] 陈玉胜, 陈全战.一种功能性酸奶的研制及其抗氧化活性[J].江苏农业科学, 2020, 48(14):221-226.
CHEN Y S, CHEN Q Z.Development of a functional yogurt and its antioxidant activity[J].Jiangsu Agricultural Sciences, 2020, 48(14):221-226.
[25] AYDAR E F, TUTUNCU S, OZCELIK B.Plant-based milk substitutes:Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects[J].Journal of Functional Foods, 2020, 70:103975.
[26] DHAKAL D, YOUNAS T, BHUSAL R P, et al.Design rules of plant-based yoghurt-mimic:Formulation, functionality, sensory profile and nutritional value[J].Food Hydrocolloids, 2023, 142:108786.
[27] KANO M, TAKAYANAGI T, HARADA K, et al.Bioavailability of isoflavones after ingestion of soy beverages in healthy adults 1[J].The Journal of Nutrition, 2006, 136(9):2291-2296.
[28] GUO Y Y, ZHAO L C, FANG X, et al.Isolation and identification of a human intestinal bacterium capable of daidzein conversion[J].FEMS Microbiology Letters, 2021, 368(8):fnab046.
[29] PENG Q W, LI Y Y, SHANG J, et al.Effects of genistein on common kidney diseases[J].Nutrients, 2022, 14(18):3768.
[30] BOECK T, SAHIN A W, ZANNINI E, et al.Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives[J].Comprehensive Reviews in Food Science and Food Safety, 2021, 20(4):3858-3880.
[31] SILVA A R A, SILVA M M N, RIBEIRO B D.Health issues and technological aspects of plant-based alternative milk[J].Food Research International, 2020, 131:108972.
[32] ISLAM N, SHAFIEE M, VATANPARAST H.Trends in the consumption of conventional dairy milk and plant-based beverages and their contribution to nutrient intake among Canadians[J].Journal of Human Nutrition and Dietetics, 2021, 34(6):1022-1034.
[33] HARPER A R, DOBSON R C J, MORRIS V K, et al.Fermentation of plant-based dairy alternatives by lactic acid bacteria[J].Microbial Biotechnology, 2022, 15(5):1404-1421.
[34] FUJII Y, TOH H, MATSUBARA T, et al.Draft genome sequence of probiotic Lactobacillus acidophilus strain L-55 isolated from a healthy human gut[J].Genome Announcements, 2016, 4(6):e01357-16.
文章导航

/