Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (6): 127-132    DOI: 10.13995/j.cnki.11-1802/ts.017585
  生产与科研经验 本期目录 | 过刊浏览 | 高级检索 |
乳化挥发法和薄膜-超声法制备阿魏酸固体脂质纳米粒工艺比较
高艺敏1,2, 张震1,2, 陈佩敏1,2, 陈钦1,2, 周允莹1,2, 汪勇1,2, 张宁1,2*
1(暨南大学 食品科学与工程系,广东高校油脂生物炼制工程技术研究中心,广东 广州,510632)
2(广东省粮油副产物生物炼制工程技术研究中心,暨南大学“油料生物炼制与营养”联合实验室,广东 广州,510632)
Preparation and comparison of ferulic acid solid lipid nano-particles made by emulsification evaporation and thin film-ultrasonic method
GAO Yimin1,2, ZHANG Zhen1,2, CHEN Peimin1,2, CHEN Qin1,2, ZHOU Yunying1,2, WANG Yong1,2, ZHANG Ning1,2*
1(Department of Food Science and Engineering, Jinan University, Guangdong University of Petroleum Biorefinery Engineering Technology Research Center, Guangzhou 510632, China)
2 (Guangdong Province Grain and Oil by-product Biorefinery Engineering Technology Research Center, Jinan University-Saskatchewan University Joint Laboratory of Oil Biorefinery and Nutrition, Guangzhou 510632, China)
下载:  HTML   PDF (8222KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 阿魏酸在食品医药行业应用广泛,但是容易受温度、pH等环境因素的影响。固体脂质纳米粒(solid lipid nanoparticles, SLNs)能有效地保护生物活性物质不被降解。采用薄膜-超声法和乳化挥发法制备阿魏酸固体脂质纳米粒(ferulic acid loaded SLNs, FA-SLNs),通过单因素实验进行制备工艺的选择,分别得到薄膜-超声法和乳化挥发法制备FA-SLNs的适宜工艺条件。实验结果表明,采用薄膜-超声法制备FA-SLNs,阿魏酸添加量10%(质量分数),卵磷脂添加量90%(质量分数),超声时间5 min,可得平均粒径44.33 nm,电位-12.35 mV的FA-SLNs,包封率为62.97%;采用乳化挥发法制备FA-SLNs,阿魏酸添加量4%(质量分数),卵磷脂的添加量16%(质量分数),单硬脂酸甘油酯的添加量80%(质量分数),聚醚F-68质量浓度10 g/L,可得平均粒径141.37 nm,电位-10.25 mV的FA-SLNs,包封率为69.54%。薄膜-超声法制得FA-SLNs的粒径较小,乳化挥发法制得的FA-SLNs包封率较高,2种方式在适宜工艺条件下制备得到的样品在4 ℃下能够稳定储存21 d,未见明显沉淀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高艺敏
张震
陈佩敏
陈钦
周允莹
汪勇
张宁
关键词:  薄膜-超声法  乳化挥发法  阿魏酸固体脂质纳米粒    
Abstract: Ferulic acid has been widely used in food and pharmaceutical industries, but it is easily affected by environmental factors, such as temperature and pH. Solid lipid nanoparticles (SLNs) can effectively protect biologically active substances from degradation. Therefore, ferulic acid loaded SLNs (FA-SLNs) were prepared by thin membrane-ultrasonic method and emulsification-evaporation method. Single-factor experiments were used to select the optimal processing conditions to prepare FA-SLNs by each method. The results showed that FA-SLNs with average particle size of 44.33 nm and potential of -12.35 mV were obtained by thin film-ultrasonic method, with 40 mg ferulic acid (10%, w/w) and lecithin (90%,w/w) added, and the ultrasonic time was 5 min. The encapsulation efficiency was 62.97%. FA-SLNs prepared by emulsification and evaporation method had ferulic acid (4% w/w), lecithin (16% w/w), and monoglyceride (80%, w/w) added, and the concentration of polyether F-68 added was 10 g/L. The average particle size of FA-SLNs prepared under this condition was 141.37 nm, the potential was -10.25 mV, and the encapsulation efficiency was 69.54%. The size of FA-SLNs prepared by thin film-ultrasonic method was smaller, and the encapsulation efficiency of FA-SLNs prepared by emulsification and evaporation method was higher. Moreover, samples prepared under the optimal conditions for both methods could be stored stably for 21 days at 4 ℃ without observing any precipitates.
Key words:  film-ultrasonic method    emulsification volatile    ferulic acid solid lipid nanoparticles
收稿日期:  2018-04-18                出版日期:  2019-03-25      发布日期:  2019-04-18      期的出版日期:  2019-03-25
基金资助: 国家自然科学基金项目(3170152531671781、317015 25);广东省科技计划项目(2017B090907018、2014 A010107014);清远市科技计划项目(2016D008)
作者简介:  硕士研究生(张宁副教授为通讯作者,E-mail:tzhning@jnu.edu.cn)。
引用本文:    
高艺敏,张震,陈佩敏,等. 乳化挥发法和薄膜-超声法制备阿魏酸固体脂质纳米粒工艺比较[J]. 食品与发酵工业, 2019, 45(6): 127-132.
GAO Yimin,ZHANG Zhen,CHEN Peimin,et al. Preparation and comparison of ferulic acid solid lipid nano-particles made by emulsification evaporation and thin film-ultrasonic method[J]. Food and Fermentation Industries, 2019, 45(6): 127-132.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.017585  或          http://sf1970.cnif.cn/CN/Y2019/V45/I6/127
[1] 尤新.植物种子皮壳中抗氧化剂阿魏酸与人体健康[J]. 食品与生物技术学报,2012,31(7):673-677.
[2] TANSKA M, MIKOLAJCZAK N, KONOPKA I. Comparison of the effect of sinapic and ferulic acids derivatives (4-vinylsyringol vs. 4-vinylguaiacol) as antioxidants of rapeseed, flaxseed, and extra virgin olive oils[J]. Food Chemistry, 2018,240(1):679-685.
[3] 梁娜,孙少平,罗跃娥,等,阿魏酸的研究进展[J].黑龙江中医药,2009(3):39-40.
[4] GHOSH S, BASAK P, DUTTA S, et al. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions[J]. Food & Chemical Toxicology, 2017,103:41-55.
[5] 任淑萌.阿魏酸的降解作用规律和机理研究及其在药物质量控制中的应用[D].石家庄:河北医科大学,2009.
[6] WANG T, XUE J, HU Q, et al. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications[J]. J Colloid Interf Sci, 2017,507:119-123.
[7] AMIT P,TANWAR Y S,PAKESH S, et al. Phytosome: Phytolipid drug dilivery system for improving bioavailability of herbal drug[J]. Journal of Pharmaceutical Science and Bioscientific Research. 2013,2(3):51-57.
[8] 李欣玮,孙立新,林晓宏,等.固体脂质纳米粒作为药物载体[J].化学进展, 2007,19(1):87-92.
[9] OEHLKE K, BEHLSNILIAN D, MAYERMIEBACH E,et al. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity[J]. Plos One, 2017,12(2):0171662.
[10] MEYYANATHAN S N, GOWTHAMARAJAN K, JAIN K, et al. Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability[J]. Current Nanoscience, 2013, 9(1):26-34.
[11] DIAN L, YANG Z, LI F, et al. Cubic phase nanoparticles for sustained release of ibuprofen: Formulation, characterization, and enhanced bioavailability study[J]. International Journal of Nanomedicine, 2013, 2013(8):845-854.
[12] FAY F J, SCOTT C A, MCCARRON P. Recent innovations in antibody-mediated, targeted particulate nanotechnology and implications for advanced visualisation and drug delivery[J]. Current Nanoscience, 2010, 6(6):560-570.
[13] OEHKLE K, BEHSINLIAN D, MAYER-MIEBACH E, et al. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity[J]. Plos One, 2017,12(2):0171662.
[14] PINIHONE P, KULWATTHANASAL Y, SUPAKA N, et al. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity[J]. Food Control,2012,24(1-2):184-190.
[15] 何军.水飞蓟素固体脂质纳米粒的制备及其口服生物利用度、肝靶向性的研究[D].成都:四川大学, 2005.
[16] 舒丹丹,张淑娟,金丽娜,等. 乳化溶剂挥发法及在微囊化制剂中的应用[J]. 北方药学, 2012,9(4):22-23.
[17] 管庆霞,赵宇巍,刘振强,等. 马钱子碱固体脂质纳米粒冷冻干燥工艺研究[J]. 中国新药杂志, 2016,25(2):210-214.
[18] SHAH RM, ELDRIDGE D, HARDING I, et al. Lipid Nanoparticles:Production, characterization and stability[J]. Anticancer Research, 2015,35(3):7 695-7 705.
[19] 关成山.紫外分光光度法测定注射用阿魏酸钠中间体的含量[J].黑龙江医药,2011,24(3):353-354.
[20] 聂庆.载药固体脂质纳米粒的制备及性质研究[D].上海:同济大学,2006.
[21] 于桐,吴超,季鹏等.黄芩素固体脂质纳米粒冻干粉的制备及体外释药性质的研究[J].中草药,2015,46(18):2 720-2 726.
[22] 何军.水飞蓟素固体脂质纳米粒的制备及其口服生物利用度、肝靶向性的研究[D].成都:四川大学, 2005.
[23] HOU D Z, XIE C S, PING Q N. Preparation of stable solid lipid nanoparticles (SLNs) suspension with combined surfactants[J]. Journal of China Pharmaceutical University, 2005, 36(5):417-422.
[24] 蔡珺.简述卵磷脂功能特性及其应用[J].科学技术创新,2011(11):19.
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn