Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 280-285    DOI: 10.13995/j.cnki.11-1802/ts.019022
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
玉米醇溶蛋白-多酚纳米颗粒对Pickering乳液稳定性的调控
唐瑜婉1, 王启明1, 杨雅轩1, 李富华1,2, 赵吉春1,2, 明建1,2*
1(西南大学 食品科学学院,重庆,400715)
2(西南大学 食品贮藏与物流研究中心,重庆,400715)
Regulation of the stability of Pickering emulsion by zein-polyphenolnanoparticles: a review
TANG Yuwan1, WANG Qiming1, YANG Yaxuan1, LI Fuhua1,2, ZHAO Jichun1,2, MING Jian1,2*
1(College of Food Science, Southwest University, Chongqing 400715, China)   
2(Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China)
下载:  HTML   PDF (3291KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 pickering乳液由于具有良好的稳定性备受食品行业青睐。玉米醇溶蛋白纳米颗粒(Zein Nanoparticles, ZNPs)作为Pickering乳液的一种新型乳化剂,具有公认安全、生物可降解、来源广泛等优势。多酚具有良好的抗氧化活性,它能与玉米醇溶蛋白(zein)相互作用形成玉米醇溶蛋白-多酚纳米颗粒(Zein-Polyphenol Nanoparticles, ZPNPs),调控其自组装行为。文中主要对ZPNPs的制备方法和机理进行了综述,并分析了这种纳米颗粒对乳液稳定性的影响,结果发现ZPNPs能提高pickering乳液的抗氧化能力,增加乳液体系的稳定性,这为乳液食品的发展提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐瑜婉
王启明
杨雅轩
李富华
赵吉春
明建
关键词:  玉米醇溶蛋白  纳米颗粒  多酚  pickering乳液    
Abstract: Pickering emulsion has been favored by food industries for its good stability over the years. Zein nanoparticles as a new emulsifier for Pickering emulsion are generally recognized as safe, biodegradable and have abundant resources. Polyphenols have strong antioxidant activities and can interact with zein to form zein-polyphenol nanoparticles (ZPNPs) to regulate their self-assembly behavior. The preparation methods and mechanisms of ZPNPs were reviewed, and the effects of ZPNPs on the stability of the emulsion were analyzed. It was found that ZPNPs can improve the antioxidant capacity and stability of Pickering emulsion,and this review was expected to provide new ideas for developing emulsion foods.
Key words:  zein    nanoparticle    polyphenol    pickering emulsion
收稿日期:  2018-10-12                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
基金资助: 国家重点研发计划专项课题(2016YFD0400203);国家自然科学基金面上项目(31771970)
通讯作者:  硕士研究生(明建教授为通讯作者,E-mail:mingjian 1972@163.com)   
引用本文:    
唐瑜婉,王启明,杨雅轩,等. 玉米醇溶蛋白-多酚纳米颗粒对Pickering乳液稳定性的调控[J]. 食品与发酵工业, 2019, 45(11): 280-285.
TANG Yuwan,WANG Qiming,YANG Yaxuan,et al. Regulation of the stability of Pickering emulsion by zein-polyphenolnanoparticles: a review[J]. Food and Fermentation Industries, 2019, 45(11): 280-285.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019022  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/280
[1] DE FOLTER JULIUS W. J, VAN RUIJVEN MARJOLEIN W. M, VELIKOV KRASSIMIR P. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein[J]. Soft Matter, 2012, 8(25): 6 807-6 815.
[2] ZOU Yuan, GUO Jian, YIN Shouwei, et al. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles[J]. Journal of Agricultural and Food Chemistry, 2015, 63(33): 7 405-7 414.
[3] 黎亢抗. 玉米醇溶蛋白纳米粒子的制备及其抗菌膜材料的研究[D]. 广州:华南理工大学, 2013.
[4] OU S, KWOK KC, KANG Y. Changes in in vitro digestibility and available lysine of soy protein isolate after formation of film[J]. Journal of Food Engineering, 2004, 64 (3): 301-305.
[5] PICKERING SU, Pickering: Emulsions. Journal of the Chemical Society[J]. Faraday Transactions. 1907, 91: 2 001-2 021.
[6] 杜冠华, 王稳航. Pickering乳化技术及其在食品中的应用[J]. 食品工业, 2016, 4: 241-244.
[7] 王丽娟. 玉米醇溶蛋白胶体颗粒的制备及应用研究[D]. 广州:华南理工大学, 2014.
[8] ZHANG Yong, CUI Lili, LI Feng, et al. Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems[J]. International Journal of Pharmaceutics, 2016, 513(1-2): 191-210.
[9] SHUKLA R, CHERYAN M. Zein: the industrial protein from corn[J]. Industrial Crops and Products, 2001, 13(3): 171192.
[10] ELZOGHBY A O, SAMY W M, ELGINDY N A. Protein-based nanocarriers as promising drug and gene delivery systems[J]. Journal of Controlled Release, 2012, 161(1): 38-49.
[11] HURTADO-LOPEZ P, MURDAN S. Formulation and characterisation of zein microspheres as delivery vehicles[J]. Journal Of Drug Delivery Science And Technology, 2005, 15(4): 267-272.
[12] WANG Qin, WANG Jinfeng, GEIL PH, et al. Zein adsorption to hydrophilic and hydrophobic surfaces investigated by surface plasmon resonance[J]. Biomacromolecules, 2004, 5(4): 1 356-1 361.
[13] HURTADO-LÓPEZA P, MURDANA S. Zein microspheres as drug/antigen carriers: a study of their degradation and erosion, in the presence and absence of enzymes[J]. Journal of Microencapsulation, 2006, 23(3): 303-314.
[14] PATEL AR, VELIKOV KP. Zein as a source of functional colloidal nano- and microstructures[J]. Current Opinion in Colloid and Interface Science, 2014, 19(5): 450-458.
[15] SHAHIDI F. Antioxidants in food and food antioxidants[J]. Die Nahrung, 2000, 44(3):158-163.
[16] 刘夫国, 马翠翠,王迪,等. 蛋白质与多酚相互作用研究进展[J]. 食品与发酵工业, 2016, 42(2): 282-288.
[17] BALASUNDRAM N, SUNDRAM K, SAMMAN S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses[J]. Food Chemistry, 2006, 99(1): 191-203.
[18] SHAHIDI F, AMBIGAIPALAN P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review[J]. Journal of Functional Foods, 2015, 18: 820-897.
[19] PATEL A R, HEUSSEN P C M, HAZEKAMP J, et al. Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium[J]. Food Chemistry, 2012, 133(2): 423-429.
[20] LIU Fuguo, MA Da, LUO Xiang, et al. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol[J]. Food Hydrocolloids, 2018, 79: 450-461.
[21] ZHONG Qixin, TIAN Huilin, ZIVANOVIC S. Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion[J]. Journal of Food Processing and Preservation, 2010, 33(2): 255-270.
[22] LU Ying, BENNICK A. Interaction of tannin with human salivary proline-rich proteins[J]. Archives of Oral Biology, 1998, 43(9): 717-728.
[23] SIEBERT KARL J, TROUKHANOVA NATALIIA V. Nature of polyphenol-protein interactions[J]. Journal of Agricultural and Food Chemistry,1996, 44(1): 80-85.
[24] VEHRING R. Pharmaceutical particle engineering via spray drying[J]. Pharmaceutical Research, 2008, 25(5): 999-1 022.
[25] XIAO Dan, ZHONG Qixin. In vitro release kinetics of nisin as affected by Tween 20 and glycerol co-encapsulated in spray-dried zein capsules[J]. Journal of Food Engineering, 2011, 106(1): 65-73.
[26] 林长春. 超临界二氧化碳抗溶剂法制备玉米蛋白基纳米营养物[D]. 上海:上海交通大学, 2010.
[27] HU Daode, LIN Changchun, LIU Liang, et al. Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids[J]. Journal of Food Engineering, 2012, 109(3): 545-552.
[28] 蒋姗姗. 玉米醇溶蛋白微粒的制备工艺研究[D]. 杭州:浙江大学, 2017.
[29] 朱雨晴, 刘伟,陈兴,等. 食品级皮克林乳液的稳定机制及稳定性研究进展[J]. 食品工业科技, 2018, 7: 315-322.
[30] 陈洪龄, 吴玮. 颗粒稳定乳液和泡沫体系的原理和应用(Ⅰ)——Pickering乳液的稳定机制和影响因素[J]. 日用化学工业, 2013, 43(1): 10-15.
[31] WANG Yonghui, WAN Zhili, YANG Xiaoquan, et al. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery[J]. Food Hydrocolloids, 2016, 54: 40-48.
[32] 王永辉. 玉米蛋白肽基食品胶体输送体系的构建及应用[D]. 广州:华南理工大学, 2016.
[33] 朱美如, 潘贯珠. 玉米醇溶蛋白-芦丁复合纳米颗粒制备Pickering乳液及其特性研究[J]. 粮食与油脂, 2018, 31(5): 43-47.
[34] TAVERNIER I, WIJAYA W, MEEREN PVD, et al. Food-grade particles for emulsion stabilization[J]. Trends in Food Science and Technology, 2016, 50: 159-174.
[35] ZOU Yuan, ZHONG Jingjing, PAN R, et al. Zein/tannic acid complex nanoparticles-stabilised emulsion as a novel delivery system for controlled release of curcumin[J]. International Journal of Food Science and Technology, 2017, 52(5): 1 221-1 228.
[36] 江存, 曾有兰,丁志义,等. 环境响应型Pickering乳液的研究进展[J]. 胶体与聚合物, 2016, 2: 78-81.
[37] NAOMIE H, ALEJANDROG M, AMANDAJ W, et al. Potential food applications of edible oil organogels[J]. Trends in Food Science and Technology, 2009, 20(10): 470-480.
[38] ADELMANN H, BINKS BP, MEZZENGA R. Oil powders and gels from particle-stabilized emulsions[J]. Langmuir the Acs Journal of Surfaces and Colloids, 2012, 28(3): 1 694-1 697.
[39] 田怀香, 卢卓彦,胡静. 食品级皮克林乳液制备及应用研究进展[J]. 中国食品学报, 2018, 18(1): 225-232.
[1] 郑子锋, 孙培冬. 龙眼核多酚对蛋白非酶糖基化的抑制及机制研究[J]. 食品与发酵工业, 2021, 47(9): 25-31.
[2] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[3] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[4] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[5] 赵昊, 宋晶晶, 于佳俊, 张晓蒙, 张凤杰, 李涛, 武运, 薛洁. 不同产区葡萄酒多酚物质抗氧化活性差异及相关性分析[J]. 食品与发酵工业, 2021, 47(6): 84-91.
[6] 王文成, 胡银凤, 饶建平, 谢建华. 微波真空干燥速溶绿茶工艺优化[J]. 食品与发酵工业, 2021, 47(4): 202-207.
[7] 周亨乐, 王富海, 易俊洁, 程冯云, 袁蕾, 牛慧慧, 周林燕. 化学抑制剂对果蔬食品多酚氧化酶性质影响的研究进展[J]. 食品与发酵工业, 2021, 47(4): 253-260.
[8] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[9] 武芸, 王春林, 王丽朋, 张腊腊, 胡浩斌. 黑果枸杞多酚吸附分离特性及抗氧化性研究[J]. 食品与发酵工业, 2021, 47(2): 70-77.
[10] 孙烨, 李英浩, WULANDARI, 吕丽爽, 张秋婷. 超声波预处理对玉米醇溶蛋白结构及其Pickering乳液稳定性的影响[J]. 食品与发酵工业, 2021, 47(1): 97-106.
[11] 苗英杰, 呼高伟, 付永前. 茶多酚热超声联合处理对冬瓜沙门氏菌数量的影响及其自适应神经网络生长模型的构建[J]. 食品与发酵工业, 2020, 46(9): 101-107.
[12] 李超, 李保国, 朱传辉, 孟祥. 茶多酚磁性微胶囊的制备条件优化和性能分析[J]. 食品与发酵工业, 2020, 46(9): 128-134.
[13] 文鹏程, 焦瑶瑶, 张卫兵, 杨敏, 张炎, 朱妍丽, 马瑞娟. 茶多酚对牛奶蛋白结构的影响[J]. 食品与发酵工业, 2020, 46(8): 40-47.
[14] 朱秀灵, 叶精勤, 盛伊健, 孔雯瑾, 陈廷然, 傅锡鹏, 戴清源. 体外模拟消化对苹果多酚及其抗氧化活性的影响[J]. 食品与发酵工业, 2020, 46(8): 63-71.
[15] 陈静钰, 黄鑫, 王力, 王洪新. 同时脱除吡虫啉和啶虫脒农残的虚拟模板表面分子印迹的制备和应用[J]. 食品与发酵工业, 2020, 46(5): 91-97.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn