Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 185-190    DOI: 10.13995/j.cnki.11-1802/ts.019201
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
干燥介质相对湿度对红枣热风干燥特性的影响
刘品, 刘寅*, 张艳, 酒曼
(中原工学院 能源与环境学院,河南 郑州,450000)
Effects of relative humidity of hot air on drying characteristics of red jujubes
LIU Pin, LIU Yin*, ZHANG Yan, JIU Man
(School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou 450000, China)
下载:  HTML   PDF (1499KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以新郑大枣为实验材料,利用单因素实验法,在控湿阶段相同温升范围(35~65 ℃),相同风速(1 m/s)条件下,研究了控湿阶段不同相对湿度(持续排湿、40%、50%、60%)对红枣内部升温、干燥时间、能耗、感官品质的影响。结果表明,在控湿阶段增加热风相对湿度可以提高红枣内部升温速度,避免表皮硬化,增加红枣内部水分向外迁移的速度,从而提高整体干燥速率,缩短干燥时间,降低干燥过程中的能耗。当控湿阶段相对湿度为60%时,干燥时间比整个阶段持续排湿干燥减少了15.30%,能耗降低了34.78%。红枣干制品收缩均匀,颜色鲜亮。目前的研究结果有助于了解热风相对湿度对大枣干燥特性的影响,为提高干燥率和干燥品质以及降低干燥能耗提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘品
刘寅
张艳
酒曼
关键词:  大枣  热风干燥  干燥速度  湿度控制    
Abstract: Using Xinzheng jujubes as experimental material, the effects of different relative humidity (continuous dehumidification, 40%, 50%, 60%) on internal temperature rise, drying time, energy consumption, and sensory quality of jujubes were studied. The jujubes were dried at 35-65 ℃ with constant wind speed (1 m/s) and humidity. The internal temperature of jujube was measured by T-type thermocouple and data acquisition instrument, and the energy consumption during drying was recorded by electric energy meter. The results showed that increasing relative humidity of hot air could increase the internal heating rate of red jujubes and avoid skins hardening. Moreover, the internal moisture migration rate of red jujubes increased, which improved overall drying rate, shortened the drying time and reduced energy consumption during drying. When the relative humidity was 60%, the drying time and energy consumption during the whole stage reduced by 15.38% and 34.78%, respectively, compared against that of continuous dehumidification, and the dried jujube products shrank evenly with bright color. Overall, current research provides a theoretical basis for improving the drying rate and drying quality, as well as for reducing energy consumption when drying jujubes.
Key words:  jujube    hot air drying    drying speed    humidity control
收稿日期:  2018-10-30                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
通讯作者:  硕士(刘寅教授为通讯作者,E-mail:15937105885@126.com)   
引用本文:    
刘品,刘寅,张艳,等. 干燥介质相对湿度对红枣热风干燥特性的影响[J]. 食品与发酵工业, 2019, 45(11): 185-190.
LIU Pin,LIU Yin,ZHANG Yan,et al. Effects of relative humidity of hot air on drying characteristics of red jujubes[J]. Food and Fermentation Industries, 2019, 45(11): 185-190.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019201  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/185
[1] 黄哲真. 红枣的营养成分及功用价值[J]. 科技视界, 2014(29):325-325.
[2] 王海新,张学军,鄢金山,等.国内红枣干燥技术的研究现状及发展趋势[J]. 农机化研究, 2015,37(8):249-253.
[3] WOJDYLO A, FIGIEL A, LEGUA P, et al. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method[J]. Food Chemistry, 2016, 207:170-179.
[4] ZOZIO S, SERVENT A, HUBERT O, et al. Changes in antioxidant activity during the ripening of jujube (Ziziphus mauritiana Lamk)[J]. Food Chemistry, 2014, 150(2):448-456.
[5] CHUMROENPHAT T, KHANPROM I, BUTKHUP L. Stability of phytochemicals and antioxidant properties in ginger (Zingiber officinale Roscoe) rhizome with different drying methods[J]. Journal of Herbs Spices & Medicinal Plants, 2011, 17(4):361-374.
[6] DIAMANTE L M, IHNS R, SAVAGE G P, et al. A new mathematical model for thin layer drying of fruits[J]. International Journal of Food Science & Technology, 2010, 45(9):1 956-1 962.
[7] 刘立果, 张学军,孙杰,等. 红枣热风干燥工艺的试验研究[J]. 农机化研究, 2017, 39(3):258-263.
[8] 弋晓康, 吴文福,崔何磊,等. 红枣热风干燥特性的单因素试验研究[J]. 农机化研究, 2012, 34(10):148-151.
[9] 木合塔尔·米吉提,吾尔泥沙·吐尼牙孜,玛依努尔·托乎提. 红枣热风干燥特性的单因素试验分析[J]. 农机化研究, 2018, 40(6):178-182.
[10] 王庆惠, 李忠新,杨劲松,等. 圣女果分段式变温变湿热风干燥特性[J]. 农业工程学报, 2014, 30(3):271-276.
[11] DAI Jianwu, RAO Junquan, WANG Dong, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology, 2015, 33(3): 365-376.
[12] KOWALSKI S J, MUSIELAK G, BANASZAK J. Heat and mass transfer during microwave-convective drying[J]. Aiche Journal, 2010, 56(1):24-35.
[13] 中华人民共和国卫生部.GB 5009.3—2016. 食品安全国家标准食品中水分的测定[S]. 北京:中国标准出版社, 2016.
[14] 鲁洁, 孙剑锋,王颉,等. 热风干燥对阜平红枣品质的影响及其数学模型的构建[J]. 食品工业科技, 2013, 34(1):97-102.
[15] 牟国良, 张学军,于蒙杰,等. 我国红枣干燥技术的现状及发展趋势[J]. 中国农机化学报, 2014,35(1):16-21.
[16] 韦玉龙, 于宁,陈恺,等. 热风干制对红枣收缩特性的影响[J]. 食品工业科技, 2014, 35(22):114-118;123.
[17] 鲁洁, 孙剑锋,王颉,等. 热风干燥对阜平红枣品质的影响及其数学模型的构建[J]. 食品工业科技, 2013, 34(1):97-102.
[18] JANJAI S, PRECOPPE M, LAMLERT N, et al. Thin- layer drying of litchi (Litchi chinensis Sonn.)[J]. Food and Bioproducts Processing, 2011, 89(3): 194-201.
[19] 巨浩羽, 张茜,郭秀良,等. 基于监测物料温度的胡萝卜热风干燥相对湿度控制方式[J]. 农业工程学报, 2016, 32(4):269-276.
[20] CURCIO S, AVERSA M, CALABRO V, et al. Simulation of food drying: fem analysis and experimental validation[J]. Journal of Food Engineering, 2008, 87(4): 541-553.
[21] 王汉羊, 刘丹,于海明. 山药微波热风耦合干燥特性及动力学模型[J]. 食品科学, 2018, 39(15):115-121.
[22] 于蒙杰, 张学军,李超新,等. 红枣热风干燥特性的试验研究[J]. 农机化研究, 2014,36(11):176-179.
[23] 李长友. 粮食热风干燥系统火用评价理论研究[J]. 农业工程学报,2012,28(12):1-6.
[24] 巨浩羽, 肖红伟,郑霞,等. 干燥介质相对湿度对胡萝卜片热风干燥特性的影响[J]. 农业工程学报, 2015, 31(16):296-304.
[25] BIALBRZEWSKI I, ZIELINSKA M, MUJUMDAR A S, et al. Heat and mass transfer during drying of a bed of shrinking particles-simulation for carrot cubes dried in a spout-fluid bed drier[J]. International Journal of Heat and Mass Transfer,2008, 51(19/20): 4 704-4 716.
[26] JU Haoyu, ZHANG Qian, MUJUMDAR A S, et al. Hot-air drying kinetics of yam slices under step change in relative humidity[J]. International Journal of Food Engineering, 2016, 12(8):783-792.
[27] 刘照朋. 房式红枣烘房的设计与研究[D]. 郑州:河南农业大学, 2014.
[1] 戴亚峰, 王东慧, 卿鹏程, 吴浩, 纵瑞叶, 马少帅, 郭晓晖, 王增利. 霍山石斛花的热风干燥特性、品质及其护色应用研究[J]. 食品与发酵工业, 2021, 47(1): 193-197.
[2] 张迎敏, 任广跃, 段续, 刘盼盼. 红薯叶粉热泵-热风联合干燥工艺优化[J]. 食品与发酵工业, 2021, 47(1): 198-205.
[3] 王烽先, 刘寅, 孟照峰, 于彰彧, 王航, 闫俊海. 静电对果蔬热风干燥特性的影响[J]. 食品与发酵工业, 2020, 46(6): 217-223.
[4] 廖超, 谢勇, 覃小丽, 叶正荣, 陈沁滨, 刘雄. 不同干燥方式对发芽青稞活性成分的影响[J]. 食品与发酵工业, 2020, 46(21): 139-146.
[5] 石慧, 吴燕燕, 胡晓, 陈胜军, 王悦齐, 荣辉, 杨少玲. 灰色关联度法综合评价卵形鲳鲹鱼片不同干制方法的品质差异[J]. 食品与发酵工业, 2020, 46(17): 166-173.
[6] 石慧, 杨少玲, 吴燕燕, 林婉玲, 杨贤庆, 黄卉. 卵形鲳鲹鱼片热风干燥条件优化及其品质特性研究[J]. 食品与发酵工业, 2019, 45(17): 129-135.
[7] 刘燕, 王雪梅, 陶璇, 张大凤, 车振明, 刘平. 不同干燥方法对郫县豆瓣挥发性风味成分的影响[J]. 食品与发酵工业, 2018, 44(9): 110-116.
[8] 周新丽, 申炳阳, 张三强, 等. 超声波辅助冷冻干燥对胡萝卜品质的影响[J]. 食品与发酵工业, 2018, 44(8): 196-202.
[9] 夏玙 , 罗惠波 , 周平 , 等. 热风干燥工艺对贮存期大曲挥发性物质的影响[J]. 食品与发酵工业, 2018, 44(6): 126-132.
[10] 李湘利, 刘静, 侯一超, 朱乐乐, 马龙传. 大蒜粒微波-热风联合干燥的工艺优化[J]. 食品与发酵工业, 2018, 44(11): 237-244.
[11] 罗鸣, 张桂容, 罗钰婕, 等.. 不同干燥方式对青梅品质的影响[J]. 食品与发酵工业, 2018, 44(10): 152-159.
[12] 代娟,田艳萍,张小春,袁亚. 蕨菜中原蕨苷含量的测定及加工过程对原蕨苷含量的影响[J]. 食品与发酵工业, 2017, 43(9): 149-.
[13] 徐鑫,张静林,陶阳,苏丽娟,韩永斌,张杰瑜,王方芳. 渗透预脱水后的樱桃番茄干燥工艺优化[J]. 食品与发酵工业, 2017, 43(8): 177-.
[14] 胡云峰,位锦锦,李宁宁,胡晗艳. 不同热风干燥温度对枸杞干燥特性的影响[J]. 食品与发酵工业, 2017, 43(1): 130-.
[15] 蒋小雅,郑炯. 不同干燥方式对梨干质构特性和微观结构的影响[J]. 食品与发酵工业, 2016, 42(3): 137-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn