Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (14): 57-62    DOI: 10.13995/j.cnki.11-1802/ts.019487
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
圆弧青霉发酵右旋糖酐酶过程动力学模型的建立
黄瑞杰, 蓝平, 钟磊, 覃琴, 蓝丽红, 韦佳蔓, 廖安平*, 李媚*
广西民族大学 化学化工学院,广西多糖材料及改性重点实验室广西民族大学,广西 南宁,530006
Establishment of kinetic models for dextranase fermentation by Penicillium cyclopium
HUANG Ruijie, LAN Ping, ZHONG Lei, QIN Qin, LAN Lihong, WEI Jiaman, LIAO Anping*, LI Mei*
Guangxi Key Laboratory for Polysaccharide Materials and Modifications Guangxi University for Nationalities, School of Chemistry and Chemical Engineering,Guangxi University for Nationalities,Nanning 530006, China
下载:  HTML   PDF (1393KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究圆弧青霉发酵生成右旋糖酐酶的过程及动力学,测定发酵过程的菌体质量浓度、右旋糖酐酶酶活以及总糖(底物)质量浓度随时间的变化,分别采用Logistic方程、Luedeking-Piret方程和类Luedeking-Piret方程对实验数据进行非线性拟合,获得了圆弧青霉菌菌体生长、右旋糖酐酶生成和底物消耗的动力学模型,相关系数R2分别为0.994、0.992、0.991。对获得的动力学模型进行分析,计算值与实验值的误差合理,所建立的发酵动力学模型能较好地反映出圆弧青霉菌发酵产右旋糖酐酶的过程,为控制和预测发酵过程提供了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄瑞杰
蓝平
钟磊
覃琴
蓝丽红
韦佳蔓
廖安平
李媚
关键词:  圆弧青霉  右旋糖酐酶  非线性拟合  动力学模型    
Abstract: In order to study the process and kinetics of dextranase production by Penicillium cyclopium, changes in cell density, dextranase activity and total sugar along fermentation time were measured. Logistic equation, Luedeking-piret equation and Luedeking-piret-like equation were used to arrange the experimental data to obtain kinetic models of cell growth (R2=0.994), dextranase synthesis (R2=0.992) and substrate consumption (R2=0.991), respectively. All established kinetic models had reasonable errors between calculated values and experimental values, therefore, they can reflect the fermentation process of Penicillum. cyclopium in a better way to produce dextranase, which provides a theoretical basis for controlling and predicting the fermentation process.
Key words:  Penicillium cyclopium    dextranase    nonlinear fitting    kinetic model
收稿日期:  2018-11-29                出版日期:  2019-07-25      发布日期:  2019-08-20      期的出版日期:  2019-07-25
基金资助: 广西生物多糖分离纯化及改性研究平台建设项目(桂科ZY18076005)(广西民族大学);广西民族大学研究生教育创新计划项目(gxun-chxzs2017129);广西民族大学大学生创新创业训练计划项目(201710608085)
作者简介:  硕士研究生(廖安平教授和李媚教授为共同通讯作者,E-mail:gxanping@sina.com,meili@gxun.edu.cn)
引用本文:    
黄瑞杰,蓝平,钟磊,等. 圆弧青霉发酵右旋糖酐酶过程动力学模型的建立[J]. 食品与发酵工业, 2019, 45(14): 57-62.
HUANG Ruijie,LAN Ping,ZHONG Lei,et al. Establishment of kinetic models for dextranase fermentation by Penicillium cyclopium[J]. Food and Fermentation Industries, 2019, 45(14): 57-62.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019487  或          http://sf1970.cnif.cn/CN/Y2019/V45/I14/57
[1] BASHARI M, EIBAID A, WANG J P, et al. Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranas[J].Ultrasonics Sonochemistry, 2013,20(1):155-161.
[2] GOULAS A K, FISHER D A, GRIMBER G K, et al. Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase[J].Enzyme and Microbial Technology, 2004,35(4):327-338.
[3] LI Kai, LU Haiqin, HANG Fangxue, et al. Improved dextranase production by chaetomium gracile, through optimization of carbon source and fermentation parameters[J].Sugar Tech,2017,19(4):432-437.
[4] REN Wei, CAI Ruanhong, YAN Wanli, et al. Purification and characterization of a biofilm-degradable dextranase from a marine bacterium[J].Marine Drugs, 2018,16(2):51.
[5] SHAHID F, AMAN A, NAWAZ M A, et al. Chitosan hydrogel microspheres: A effective covalent matrix for crosslinking of soluble dextranase to increase stability and recycling efficiency[J].Bioprocess and Biosystems Engineering, 2017,40(3):451-461.
[6] 常国炜, 林荣珍,曾练强,等. 右旋糖酐酸解与酶解产物比较[J].甘蔗糖业,2012(6):33-38.
[7] WANG Xiaobei, LU Mingsheng, WANG Shujun, et al. The atmospheric and room-temperature plasma (ARTP) method on the dextranase activity and structure[J].International Journal of Biological Macromolecules, 2014,70(8):284-291.
[8] 张宇琪, 张洪斌,甘微苇,等. 右旋糖酐酶研究进展[J].生物工程学报,2015,31(5):634-647.
[9] CAI Ruanhong, LU Mingsheng, FANG Yaowei, et al. Screening, production, and characterization of dextranase from Catenovulum sp.[J].Annals of Microbiology, 2014, 64(1):147-155.
[10] 曹研研, 张洪斌,李若菡,等. 棘孢青霉菌发酵产右旋糖酐酶的条件优化[J].食品科学,2015,36(23):215-220.
[11] 朱慧霞, 王雅洁,邓胜松,等. 绳状青霉菌发酵产右旋糖酐酶的条件研究[J].食品科学, 2010,31(19):288-291.
[12] ZHANG Zedong, LIU Jidong, MA Shaoying, et al. Enhancement of catalytic performance of α-dextranase from Caetomium gracile through optimization and suitable shear force[J].Sugar Tech,2017,20(1):78-87.
[13] ZOHRA R R, AMAN A, ANSARI A, et al. Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25[J].International Journal of Biological Macromolecules, 2015,78:243-248.
[14] WANG Xiaobei, CHENG Huaixu, LU Mingsheng, et al. Dextranase from Arthrobacter oxydans KQ11-1 inhibits biofilm formation by polysaccharide hydrolysis[J].Biofouling,2016,32(10):1 223-1 233.
[15] ZHANG Yuqi, LI Ruohan, ZHANG Hongbin, et al. Purification, characterization, and application of a thermostable dextranase from Talaromyces pinophilus [J].Journal of Industrial Microbiology and Biotechnology, 2017, 44(2):317-327.
[16] NETSOPA S, NIAMSANIT S, ARAKI T, et al. Purification andcharacterization including dextran hydrolysis of dextranase from Aspergillus allahabadii X26[J].Sugar Tech,2019,21(2):329-340.
[17] SUFIATE B L, SOARES F E F, MOREIRA S S, et al.In vitro and in silico characterization of a novel dextranase from Pochonia chlamydosporia[J].3 Biotech, 2018, 8(3):1-9.
[18] 李媚, 曾平,袁宇,等. 肠膜明串珠菌CICC-21725产右旋糖酐的发酵动力学[J].科学技术与工程, 2016, 16(26):28-33.
[19] BASHARI M, JIN Zhengyu, WANG Jinpeng, et al. A novel technique to improve the biodegradation efficiency of dextranase enzyme using the synergistic effects of ultrasound combined with microwave shock[J].Innovative Food Science and Emerging Technologies, 2016,35:125-132.
[20] 张红, 王腾,李翠清. 响应面分析优化蒽酮-硫酸法测定桑叶中多糖的含量[J].食品工业科技,2012,33(24):62-65.
[21] 梁明征. 生物合成右旋糖酐及分子量调控[D].南宁:广西民族大学,2012.
[22] 王德龙. 海洋微生物右旋糖苷酶的发酵和纯化研究[D].南京:南京农业大学,2014.
[23] 郑丽雪, 王立梅,梅艳珍,等. 酿酒酵母生产谷胱甘肽分批发酵动力学研究[J].食品科学,2011, 32(1):158-161.
[24] 张凯丽, 郑晗青,牛启启,等. 酿酒酵母工程菌分批发酵产UMP动力学模型[J].食品工业科技,2015,36(9):158-161.
[25] 张琴. 粪产碱杆菌在不同碳源下发酵生产凝胶多糖的动力学研究[D].上海:华东理工大学,2018.
[1] 姚妞妞, 常春晖, 于宏伟, 郭润芳. 适合奶醋发酵的酵母菌发酵动力学[J]. 食品与发酵工业, 2020, 46(22): 106-112.
[2] 李湘利, 刘静, 王印壮, 李晓彤, 周生稳. 鸡枞菌热风-微波联合干燥特性及动力学模型[J]. 食品与发酵工业, 2020, 46(21): 107-114.
[3] 薛广, 李敏, 关志强. 基于Weibull函数的超声渗透罗非鱼片真空微波干燥模拟[J]. 食品与发酵工业, 2020, 46(1): 157-165.
[4] 刘家璇, 彭孟晨, 杨雪洁, 雷洋, 黄小丽, 王军. 射频预处理对杏果热风干燥特性及营养成分的影响[J]. 食品与发酵工业, 2019, 45(3): 176-182.
[5] 王昱圭, 汤雪纤, 刘思媛, 张甫生, 郑炯. 超声波处理对麻竹笋干复水特性的影响及动力学模型[J]. 食品与发酵工业, 2019, 45(2): 80-86.
[6] 吴振, 李红, 王勇德, 谭红军, 杨勇, 詹永, 王福强. 不同热处理温度对蓝莓果汁在冷藏过程中多酚和黄酮含量的影响[J]. 食品与发酵工业, 2019, 45(17): 209-215.
[7] 俞所银, 杨晋青, 葛宇, 翁史昱, 雷涛, 虞成华, 陆志芸, 包建强. 南极磷虾在不同冻藏温度下保鲜期预测模型[J]. 食品与发酵工业, 2019, 45(13): 98-104.
[8] 王世芳,宋海燕,张志勇,韩小平. 基于近红外光谱的常温贮藏期番茄果肉硬度动力学模型[J]. 食品与发酵工业, 2017, 43(9): 83-.
[9] 覃小丽,李道明,王永华,钟金锋. rProROL脂肪酶催化大豆油水解反应的半经验动力学模型[J]. 食品与发酵工业, 2016, 42(6): 67-.
[10] 于晓萌,张京良,孙永超,姜言晖,沈照鹏,王鹏,江晓路. 基于发酵优化和动力学建立Levan果聚糖生产的数字化模型[J]. 食品与发酵工业, 2016, 42(12): 20-.
[11] 郑婷,董鹏程,王仁欢,张一敏,梁荣蓉,毛衍伟,朱立贤,罗欣. 冷却牛肉中沙门氏菌生长预测模型的建立和验证[J]. 食品与发酵工业, 2015, 41(7): 38-.
[12] 雷志方,谢晶. 金枪鱼基于理化指标的货架期预测模型的建立[J]. 食品与发酵工业, 2015, 41(11): 185-.
[13] 汤斌,许钟源,李松,陈涛. 匍枝根霉纤维素酶发酵条件优化及分批发酵动力学模型的构建[J]. 食品与发酵工业, 2014, 40(01): 85-90.
[14] 周厚源, 李汴生, 阮征, 刘娟, 郭伟波, 林光明,. 热处理过程鸡翅品质变化的动力学模型[J]. 食品与发酵工业, 2013, 39(08): 68-75.
[15] 陈帅,郑佳,刘琨毅,彭昱雯,黄钧,易彬,赵金松,周荣清. 红曲酯化酶促反应及其代谢产物特征[J]. 食品与发酵工业, 2012, 38(02): 47-51.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn