Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (12): 169-175    DOI: 10.13995/j.cnki.11-1802/ts.019588
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
超声均质法制备以乳清蛋白-OSA变性淀粉为乳化剂的纳米乳液
杨贵妃,杨柳,钟金锋,覃小丽*
西南大学 食品科学学院,食品科学与工程国家级实验教学示范中心,重庆,400715
Ultrasonic homigenization of nanoemulsions stabilized by whey protein-octenylsuccinic anhydride modified starch
YANG Guifei, YANG Liu, ZHONG Jinfeng, QIN Xiaoli*
National Demonstration Center for Experimental Food Science and Technology Education, College of Food Science, Southwest University, Chongqing 400715, China
下载:  HTML   PDF (3288KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 乳清蛋白乳液易在乳清蛋白等电点(pI ≈ 4.5)发生液滴聚集,限制了其在食品工业中的广泛使用。为探索乳清蛋白和辛烯基琥珀酸酯变性淀粉(octenyl succinic anhydride modified starch,OSA变性淀粉)组合改善纳米乳液物理稳定性的可行性,以超声波均质法分别制备乳清蛋白和乳清蛋白-OSA变性淀粉(质量比为7∶3)稳定的纳米乳液,研究pH、离子强度和热处理对纳米乳液稳定性的影响。当pH=4时,乳清蛋白纳米乳液的粒径显著增大至2 100 nm,而乳清蛋白-OSA变性淀粉纳米乳液粒径仅为280 nm,说明添加OSA变性淀粉能有效减弱乳清蛋白纳米乳液的液滴聚集。乳清蛋白-OSA变性淀粉纳米乳液的粒径在Na+浓度<0.6 mol/L和40~80 ℃下无显著变化。研究表明添加OSA变性淀粉有望扩大乳清蛋白纳米乳液在酸性食品中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨贵妃
杨柳
钟金锋
覃小丽
关键词:  乳清蛋白  OSA变性淀粉  纳米乳液  稳定性    
Abstract: This study aimed to explore the feasibility of using whey protein and octenyl succinic anhydride (OSA) modified starch in combination to improve the physical stability of nanoemulsions. Nanoemulsions stabilized by whey protein and whey protein-OSA modified starch (weight ratio was 7∶3) were prepared by ultrasonic homogenization. The effects of pH, ionic strength and heat treatment on the stability of nanoemulsions were investigated. The results showed that at pH=4, the particle size of nanoemulsion prepared with whey protein increased significantly to 2 100 nm, while the particle size of nanoemulsion prepared with whey protein-OSA modified starch was only 280 nm. This indicated that OSA modified starch was effective in attenuating droplet aggregation of whey protein-coated nanoemulsion. Moreover, the particle size of the whey protein-OSA modified starch prepared nanoemulsion did not change significantly when the concentration of Na+ was less than 0.6 mol/L and at 40-80 ℃. This study shows that OSA modified starch is expected to expand the use of whey protein stabilized nanoemulsions in acidic foods.
Key words:  whey protein    octenyl succinic anhydride modified starch    nanoemulsion    stability
收稿日期:  2018-12-10      修回日期:  2019-01-03           出版日期:  2019-06-25      发布日期:  2019-07-16      期的出版日期:  2019-06-25
基金资助: 国家自然科学基金(No.31601430);中央高校基本科研业务费专项(No.XDJK2017B040);重庆市博士后科研项目特别资助(No.Xm2017046);中国博士后科学基金(No.2016M602636)
通讯作者:  *,E-mail:qinxiaoli 66@163.com   
作者简介:  本科生(覃小丽副教授为通讯作者,E-mail:qinxiaoli 66@163.com)。
引用本文:    
杨贵妃,杨柳,钟金锋,等. 超声均质法制备以乳清蛋白-OSA变性淀粉为乳化剂的纳米乳液[J]. 食品与发酵工业, 2019, 45(12): 169-175.
YANG Guifei,YANG Liu,ZHONG Jinfeng,et al. Ultrasonic homigenization of nanoemulsions stabilized by whey protein-octenylsuccinic anhydride modified starch[J]. Food and Fermentation Industries, 2019, 45(12): 169-175.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019588  或          http://sf1970.cnif.cn/CN/Y2019/V45/I12/169
[1] YU Hailong, HUANG Qingrong. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions[J]. Journal of Agricultural and Food Chemistry, 2012, 60(21): 5 373-5 379.
[2] ZHONG Jinfeng, WANG Qiang, QIN Xiaoli. Improving the stability of phosphatidylcholine-enhanced nanoemulsions using octenyl succinic anhydride-modified starch[J]. International Journal of Biological Macromolecules, 2018, 120: 1 500-1 507.
[3] SMITHERS G W. Whey and whey proteins—from ‘gutter-to-gold’[J]. International Dairy Journal, 2008, 18(7): 695-704.
[4] MCCLEMENTS D J. Protein-stabilized emulsions[J]. Current Opinion in Colloid & Interface Science, 2004, 9(5): 305-313.
[5] EVANS M, RATCLIFFE I, WILLIAMS P A. Emulsion stabilisation using polysaccharide-protein complexes[J]. Current Opinion in Colloid & Interface Science, 2013, 18(4):272-282.
[6] NEIRYNCK N, VAN DER MEEREN P, LUKASZEWICZ-LAUSECKER M, et al. Influence of pH and biopolymer ratio on whey protein-pectin interactions in aqueous solutions and in O/W emulsions[J]. Colloids and Surfaces A (Physicochemical and Engineering Aspects), 2007, 298(1-2): 99-107.
[7] QIU Chaoying, ZHAO Mouming, MCCLEMENTS D J. Improving the stability of wheat protein-stabilized emulsions: Effect of pectin and xanthan gum addition[J]. Food Hydrocolloids, 2015, 43: 377-387.
[8] 兰冬梅, 周春霞,张梦霞,等. 黄原胶对罗非鱼蛋白-大豆蛋白混合体系乳浊液稳定性的影响[J]. 食品与发酵工业, 2016, 42(2): 114-119.
[9] YIN Baoru, ZHANG Rujing, YAO Ping. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions[J]. Molecules, 2015, 20(3):5 165-5 183.
[10] 李达鸿, 李璐,解新安,等. OSA变性淀粉的乳化特性及其对纳米乳液构建影响的研究[J]. 食品工业科技, 2017, 38(1): 59-64.
[11] TESCH S, GERHARDS C, SCHUBERT H. Stabilization of emulsions by OSA starches[J]. Journal of Food Engineering, 2002, 54(2): 167-174.
[12] SNCHEZ C C, PATINO J M R. Interfacial, foaming and emulsifying characteristics of sodium caseinate as influenced by protein concentration in solution[J]. Food Hydrocolloids, 2005, 19(3): 407-416.
[13] LUO Xiang, ZHOU Yanyan, BAI Long, et al. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability[J]. Journal of Colloid and Interface Science, 2017, 490: 328-335.
[14] MCCLEMENTS D J, MONAHAN F J, KINSELLA J E. Disulfide bond formation affects stability of whey protein isolate emulsions[J]. Journal of Food Science, 1993, 58(5): 1 036-1 039.
[15] DICKINSON E, GALAZKA V B. Bridging flocculation induced by competitive adsorption: Implications for emulsion stability[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(7): 963-969.
[16] KALTSA O, MICHON C, YANNIOTIS S, et al. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers[J]. Ultrasonics Sonochemistry, 2013, 20(3): 881-891.
[17] LEONG T S H, MARTIN G J O, ASHOKKUMAR M. Ultrasonic encapsulation—A review[J]. Ultrasonics Sonochemistry, 2017, 35: 605-614.
[18] ARZENI C, MARTNEZ K, ZEMA P, et al. Comparative study of high intensity ultrasound effects on food proteins functionality[J]. Journal of Food Engineering, 2012, 108(3): 463-472.
[19] JAMBRAK A R, MASON T J, LELAS V, et al. Effect of ultrasound treatment on particle size and molecular weight of whey proteins[J]. Journal of Food Engineering, 2014, 121: 15-23.
[20] PERDIH T S, ZUPANC M, DULAR M. Revision of the mechanisms behind oil-water (O/W) emulsion preparation by ultrasound and cavitation[J]. Ultrasonics Sonochemistry, 2019, 51: 298-304.
[21] JAMBRAK A R, LELAS V, MASON T J, et al. Physical properties of ultrasound treated soy proteins[J]. Journal of Food Engineering, 2009, 93(4): 386-393.
[22] OZTURK B, ARGIN S, OZILGEN M, et al. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic[J]. Food Chemistry, 2015, 188: 256-263.
[23] QIAN Cheng, DECKER E A, XIAO Hang, et al. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type[J]. Food Chemistry, 2012, 132(3): 1 221-1 229.
[24] KEOWMANEECHAI E, MCCLEMENTS D J. Effect of CaCl2 and KCl on physiochemical properties of model nutritional beverages based on whey protein stabilized oil-in-water emulsions[J]. Journal of Food Science, 2002, 67(2): 665-671.
[25] KULMYRZAEV A, CHANAMAI R, MCCLEMENTS D J. Influence of pH and CaCl2 on the stability of dilute whey protein stabilized emulsions[J]. Food Research International, 2000, 33(1): 15-20.
[26] 陈冬, 张晓阳,刘尧政,等. 姜油纳米乳液超声波乳化制备工艺及其稳定性研究[J]. 农业机械学报, 2016, 47(6): 250-258.
[27] LI Ming, MA Ying, CUI Jie. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin[J]. LWT-Food Science and Technology, 2014, 59(1): 49-58.
[1] 夏天航, 魏子淏, 马磊, 奚晓鸿, 宋琳, 徐雅男, 薛长湖. 负载虾青素的油凝胶纳米乳液的构建及体外消化研究[J]. 食品与发酵工业, 2021, 47(9): 1-7.
[2] 阮雁春, 彭旭东, 杨丹. 花生蛋白水解物对色拉酱贮藏稳定性的影响[J]. 食品与发酵工业, 2021, 47(8): 96-100.
[3] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[4] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[5] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[6] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[7] 王伟佳, 高晓夏月, 刘爱国, 刘立增, 王鹏程, 杨毅. 不同热处理无乳糖酸奶与普通酸奶品质的比较[J]. 食品与发酵工业, 2021, 47(5): 99-104.
[8] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[9] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[10] 马亚琴, 贾蒙, 张晨. 高压均质技术在果汁加工中的应用[J]. 食品与发酵工业, 2021, 47(3): 265-273.
[11] 彭松林, 潘成磊, 康梦瑶, 李懿璇, 赵紫悦, 郑仁兵, 尚永彪. 卤烤鸭中类黑精的提取及其抗氧化活性与化学稳定性研究[J]. 食品与发酵工业, 2021, 47(2): 22-29.
[12] 陈聪, 胡长利, 谢晶. 浓缩与冻结方式对牛乳品质的影响[J]. 食品与发酵工业, 2021, 47(1): 214-221.
[13] 祁立波, 吴超, 钟利敏, 尚珊, 董秀萍, 林松毅. 婴幼儿营养包组成及质量控制现状分析[J]. 食品与发酵工业, 2021, 47(1): 293-302.
[14] 冯文旭, 吴殿辉, 蔡国林, 王璐, 翟秀超, 陆健. 精油纳米乳液对禾谷镰刀菌的抑制作用[J]. 食品与发酵工业, 2020, 46(9): 94-100.
[15] 常馨月, 罗惟, 陈程莉, 董全. 奇亚籽油微胶囊贮藏稳定性及缓释动力学[J]. 食品与发酵工业, 2020, 46(9): 108-114.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn