Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 179-184    DOI: 10.13995/j.cnki.11-1802/ts.019592
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
不同预处理对辣木籽油提取率的影响及其机理初步分析
孙燕, 覃小丽*, 钟金锋, 刘雄*
(西南大学 食品科学学院,重庆,400715)
Effects of different pretreatments on extracting Moringa Oleiferaseed oil and relevant mechanisms
SUN Yan, QIN Xiaoli*, ZHONG Jinfeng, LIU Xiong*
(College of Food Science, Southwest University, Chongqing 400715, China)
下载:  HTML   PDF (3086KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善传统水酶法辣木籽油提取效率低的问题,本研究以辣木籽粉为原料,采用不同预处理(微波、高压、超声)辅助水酶法提取辣木籽油,结合扫描电镜观察预处理前后辣木籽粉细胞表观结构的变化并初步探讨不同预处理提取辣木籽油的机理。结果表明,与传统水酶法相比,微波、高压、超声预处理使油脂提取率分别提高了5.64%、9.03%、9.90%。扫描电镜结果显示,3种预处理均不同程度破坏辣木籽的表观结构,其中,超声和高压对其微观结构破坏程度最大,表现在超声使辣木籽颗粒变得更加细小,有明显孔洞;高压使辣木籽粉呈不均匀的片状结构。高压和超声能够有效地破坏辣木籽细胞壁从而提高其油脂提取效率,为油脂提取提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙燕
覃小丽
钟金锋
刘雄
关键词:  辣木籽油  微波  高压  超声  水酶法    
Abstract: This study aimed to improve the extraction efficiency of Moringa oleifera seed oil and reveal the mechanisms for different pretreatment methods. The Moringa oleifera powder was pretreated by microwave, high pressure, and ultrasound, respectively, followed by aqueous enzymatic extraction. The structures of Moringa oleifera powder with and without pretreatments were examined by scanning electron microscopy. The results showed that compared with traditional aqueous enzymatic extraction method, microwave, high pressure, and ultrasonic pretreatments increased the oil extraction rate by 5.64%, 9.03%, and 9.90%, respectively. Moreover, it was found that all these three pretreatments could severely damage the structure of Moringa oleifera seeds to different degrees. In particular, ultrasonic treatment led to smaller fragments and obvious holes in Moringa oleifera seed particles, while high pressure treatment resulted in homogeneous tablet-structure. In conclusion, high pressure and ultrasound can effectively destroy Moringa oleifera seed cell walls to improve the extraction efficiency of oil, which provides a new idea for extracting oils in food industries.
Key words:  Moringa oleifera seed oil    microwave    high pressure    ultrasonic    aqueous enzymatic method
收稿日期:  2018-12-11                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
基金资助: 国家自然科学基金项目(31601430);中央高校基本科研业务费专项(XDJK2016B034)
通讯作者:  硕士研究生(覃小丽副教授和刘雄教授共为通讯作者,E-mail:qinxiaoli66@163.com,liuxiong848@hotmail.com)   
引用本文:    
孙燕,覃小丽,钟金锋,等. 不同预处理对辣木籽油提取率的影响及其机理初步分析[J]. 食品与发酵工业, 2019, 45(11): 179-184.
SUN Yan,QIN Xiaoli,ZHONG Jinfeng,et al. Effects of different pretreatments on extracting Moringa Oleiferaseed oil and relevant mechanisms[J]. Food and Fermentation Industries, 2019, 45(11): 179-184.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019592  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/179
[1] 许敏, 赵三军,宋晖,等. 辣木的研究进展[J].食品科学,2016,37(23):291-301.
[2] UPADHYAY P, YADAV M K, MISHRA S, et al. Moringa oleifera: A review of the medical evidence for its nutritional and pharmacological properties[J].International Journal of Research in Pharmacy and Science,2015,5(2):12-16.
[3] TSAKNIS J, LALAS S, GERGIS V, et al. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya[J].Journal of Agricultural and Food Chemistry,1999,47(11):4 495-4 499.
[4] SALAHELDEEN M, AROUA M K, MARIOD A A, et al. An evaluation of Moringa peregrina seeds as a source for bio-fuel [J].Industrial Crops and Products,2014,61:49-61.
[5] 段琼芬, 刘飞,罗金岳,等. 辣木籽油的超临界CO2萃取及其化学成分分析[J].中国油脂,2010(2):76-79.
[6] 虎虓真, 陶宁萍,许长华. 基于食药价值的辣木籽研究进展[J].食品科学,2018,39(15):302-309.
[7] BHUTADA P R, JADHAY A J B, PINJARI D V, et al. Solvent assisted extraction of oil from Moringa oleifera Lam. seeds[J]. Industrial Crops and Products,2016,82:74-80.
[8] 刘华勇. 水酶法同时提取辣木籽油和抗氧化肽的研究[D].广州:华南理工大学,2016.
[9] ANWAR F, LATIF S. Quality assessment of Moringa concanensis seed oil extracted through solvent and aqueous-enzymatic techniques[J].Grasas Y Aceites,2008,59(1):69-75.
[10] YUSOFF M M, NIRANJAN K, GORDON M H, et al. High pressure pre-treatment of Moringa oleifera seed kernels prior to aqueous enzymatic oil extraction[J].Innovative Food Science and Emerging Technologies,2017,39:129-136.
[11] 陈德经. 微波预处理水酶法提取茶叶籽油工艺优化[J].食品科学,2012,33(6):87-91.
[12] LIU S, JIANG L Z, LI Y. Research of aqueous enzymatic extraction of watermelon seed oil of ultrasonic pretreatment assisted[J]. Procedia Engineering,2011,15(1):4 949-4 955.
[13] 原姣姣, 王成章,张红玉,等. 超声辅助酶法提取橄榄油的研究[J].中国油脂,2016,41(7):10-14.
[14] JIAO J, LI Z G, GAI Q Y, et al. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities[J].Food Chemistry,2014,147(6):17-24.
[15] 仵缘, 蒋丹,包瑛,等. 微波辅助溶剂法提取橡胶籽油工艺[J].食品与发酵工业,2015,41(7):244-250.
[16] 胡滨, 陈一资,苏赵. 超声波和微波辅助水酶法提取葡萄籽油的工艺研究[J].中国油脂,2015,40(12):12-17.
[17] VINATORU M, CHEMAT F, MASON T J. The extraction of natural products using ultrasound or microwaves[J].Current Organic Chemistry,2011,15(2):237-247.
[18] 杨慧萍, 宋伟,王素雅,等. 高压蒸煮、超声波辅助水酶法处理米糠技术研究[J].粮食与饲料工业,2005,12:20-21.
[19] JUNG S, MAHFUZA A. Low temperature dry extrusion and high-pressure processing prior to enzyme-assisted aqueous extraction of full fat soybean flakes[J].Food Chemistry,2009,114(3):947-954.
[20] ATHANASIOS C, NIKOLAS G S, DIMITRA J D, et al. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum)[J].Ultrasonics Sonochemistry,2006,13(1):54-60.
[21] PINGRET D, FABIANO-TIXIER A S, CHEMAT F. Degradation during application of ultrasound in food processing: A review[J].Food Control,2013,31(2):593-606.
[22] 洪晴悦, 张玉. 超声波辅助提取牡丹籽毛油的工艺优化及脂肪酸组成分析[J].食品与发酵工业,2018,44(3): 159-164.
[23] SHARMA A, GUPTA M N. Ultrasonic pre-irradiation effect upon aqueous enzymatic oil extraction from almond and apricot seeds[J].Ultrasonics Sonochemistry,2006,13(6):529-534.
[24] TOMA M, VINATORU M, PANIWNYK L, et al. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction[J].Ultrasonics Sonochemistry,2001,8(2):137-142.
[25] ABDULKARIM S M, LONG K, LAI O M, et al. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods[J].Food Chemistry,2005,93(2):253-263.
[1] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[2] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[3] 朱俊成, 冯鑫, 李璐思, 马良, 戴宏杰, 付余, 黄少林, 张宇昊. 不同干燥方式对明胶特性的影响[J]. 食品与发酵工业, 2021, 47(8): 34-39.
[4] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[5] 刘丹丹, 李昕沂, 罗晶晶, 王启会, 罗静, 王海燕. 超高压微射流均质技术对猕猴桃果酒品质的影响[J]. 食品与发酵工业, 2021, 47(8): 165-169.
[6] 郭金喜, 马燕, 范田丽, 杨光勇, 马君刚. 微波消解-电感耦合等离子体串联质谱法测定新疆黑枸杞红酒中微量元素的主成分分析[J]. 食品与发酵工业, 2021, 47(8): 243-249.
[7] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[8] 党慧杰, 郑远荣, 刘振民. 超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响[J]. 食品与发酵工业, 2021, 47(6): 56-61.
[9] 孙聿尧, 谢晶, 王金锋. 超声波解冻与传统解冻方式的比较与竞争力评估[J]. 食品与发酵工业, 2021, 47(6): 253-258.
[10] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[11] 刘瑞, 陶乐仁, 万康. 微波处理对‘新大坪'马铃薯贮藏品质的影响[J]. 食品与发酵工业, 2021, 47(5): 168-173.
[12] 臧芳波, 吕蒙, 付永杰, 时若栋, 王琳, 冯随, 高晓光. 高压静电场解冻技术在肉类及肉制品中的应用[J]. 食品与发酵工业, 2021, 47(5): 303-308.
[13] 熊海波, 刘云鹏, 徐庆阳. 超声对谷氨酸棒杆菌发酵L-异亮氨酸的影响[J]. 食品与发酵工业, 2021, 47(4): 40-46.
[14] 戚军, 陈亚, 徐颖, 熊国远, 梅林. 超声辅助炖制对黄羽鸡汤香味的影响[J]. 食品与发酵工业, 2021, 47(4): 153-158.
[15] 王文成, 胡银凤, 饶建平, 谢建华. 微波真空干燥速溶绿茶工艺优化[J]. 食品与发酵工业, 2021, 47(4): 202-207.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn