Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 236-241    DOI: 10.13995/j.cnki.11-1802/ts.019593
  分析与检 本期目录 | 过刊浏览 | 高级检索 |
陈年生普与熟普的黄烷醇类活性成分分析
刘洪林1*, 曾艺涛2, 赵欣1*
1(重庆第二师范学院 重庆市功能性食品协同创新中心,重庆市功能性食品工程技术研究中心,功能性食品研发重庆市工程实验室,重庆 400067)
2(重庆市辅仁中学,重庆 400067)
Flavanols in aged-raw and young-ripened Pu’er tea
LIU Honglin1*, ZENG Yitao2, ZHAO Xin1*
1(Chongqing University of Education,Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing 400067, China)
2(Chongqing Furen High School, Chongqing 400067,China)
下载:  HTML  
输出:  BibTeX | EndNote (RIS)      
摘要 采用Folin-Ciocalteu比色法和LC-DAD-ESI-MS法对陈年生普(以下简称APT)和熟普(以下简称YPT)中总多酚(The total phenolic, TPC)和黄烷醇类活性成分进行分析。研究结果表明,从APT和YPT中确定了8种黄烷醇类活性成分,它们分别是儿茶素(C)、表儿茶素(EC)、表儿茶素没食子酸酯(ECG)、表没食子儿茶素(EGC)、表没食子儿茶素没食子酸酯(EGCG)、没食子儿茶素(GC)、没食子儿茶素没食子酸酯(GCG)、儿茶素没食子酸酯(CG)。2种茶中GC含量差异不显著,APT中的TPC和其余7种黄烷醇类化合物含量均显著高于YPT中。不同产地普洱茶的TPC和8种黄烷醇类化合物含量差异不显著,不同年份差异显著。主成分分析法(PCA)和层次聚类分析(HCA)依据TPC和黄烷醇类化合物能将APT和YPT很好的聚类,成功区分出APT和YPT样品;除GC外的其余7种黄烷醇类化合物和TPC均是很好的化学标记。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洪林
曾艺涛
赵欣
关键词:  陈年生普  熟普  总多酚  黄烷醇  主成分分析  聚类分析    
Abstract: The purpose of this study was to supervise the quality of Pu'er tea and provide reference for consumers to purchase Pu'er tea. Folin-ciocalteu colorimetry and LC-DAD-ESI-MS were used to analyze total polyphenols (TPC) and flavanols in aged raw Pu'er tea (APT) and young ripened Pu'er tea (YPT). The results showed that there were eight flavanols identified from APT and YPT, which were catechin (C), epicatechin (EC), epicatechin gallic acid ester (ECG), table gallic catechins (EGC), table gallic catechin gallic acid ester (EGCG), gallnut catechins (GC), gallnut catechin gallic acid ester (GCG), and catechin gallate (CG). There was no significant difference in GC content between two teas while the contents of TPC and other seven flavanols in APT were significantly higher than that in YPT. Moreover, the contents of TPC and flavanols in Pu'er tea from different locations were not significantly different, but differences between teas with different years were significant. Furthermore, principal component analysis (PCA) and hierarchical clustering analysis (HCA) clustered APT and YPT well and therefore they could be distinguished from each other. Overall, in addition to GC, the other seven flavanols and TPC are good chemical markers, and combination of PCA and HCA can be used as an appropriate method to distinguish APT from YPT.
Key words:  aged raw Pu’er tea    young ripened Pu’er tea    total polyphenols    flavanols    principal component analysis    hierarchical cluster analysis
收稿日期:  2018-12-11                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
基金资助: 重庆高校创新团队建设计划资助项目(CXTDX20 1601040);重庆市南岸区2018年农业集成示范计划项目(南岸区现代农业综合示范区景观提升研究)
通讯作者:  博士,讲师(刘洪林讲师和赵欣教授共为通讯作者,E-mail:475844900@qq.com;zhaoxin@cque.edu.cn)   
引用本文:    
刘洪林,曾艺涛,赵欣. 陈年生普与熟普的黄烷醇类活性成分分析[J]. 食品与发酵工业, 2019, 45(11): 236-241.
LIU Honglin,ZENG Yitao,ZHAO Xin. Flavanols in aged-raw and young-ripened Pu’er tea[J]. Food and Fermentation Industries, 2019, 45(11): 236-241.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019593  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/236
[1] 马燕,陈立佼,吕才有, 等.普洱茶安全性毒理学评价研究概述[J].茶叶科学,2018,38(3):221-226.
[2] ZHOU ZX, DUAN WH, WU HY, et al. Investigation and analysis of consumptive request for Chinese premium teas[J].Journal of Zhejiang University-SCIENCE B,2013,30:412-416.
[3] 覃健军.普洱茶生茶抗运动疲劳作用研究[J].福建茶叶,2018,40(1):302-303.
[4] LV HP, ZHANG YJ, LIN Z, et al. Processing and chemical constituents of Pu-erh tea: A. review[J].Food Research International, 2013,53(2):608-618.
[5] WANG Q, BELŠ CAK-CVITANOVI′ C A, DURGO K, et al. Physicochemical properties and biological activities of a high-theabrownins instant Pu-erh tea produced using Aspergillus tubingensis[J]. LWT-Food Science and Technology, 2018,90:598-605.
[6] 郝彬秀,李颂,田海霞, 等.普洱熟茶的发酵微生物研究进展[J].食品研究与开发,2018,39(8):203-206.
[7] 蒋睿,罗理勇,常睿,等.普洱生茶和熟茶的品质化学成分分析比较[J].西南大学学报(自然科学版),2018,40(6):38-47.
[8] YI T, ZHU L,PENG WL, et al.Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis[J]. LWT-Food Science and Technology,2015,62(1):194-201.
[9] 陈亚蓝,王雪青,王怡雯, 等.基于HepG2细胞模型研究普洱茶茶色素的抗氧化作用[J].食品科学,2017,38(1):226-231.
[10] 顾小盼,潘勃,吴臻,等.普洱茶药理作用研究进展[J].中国中药杂志,2017,42(11):2 038-2 041.
[11] ZHANG HM, WANG CF,SHEN SM,et al.Antioxidant phenolic compounds from Pu-erh tea[J]. Molecules,2012,17(12):14 037-14 045.
[12] 熊昌云,杨彬,彭远菊, 等.普洱茶抑肥降脂作用比较研究[J].西南农业学报,2018,31(5):1 058-1 062.
[13] QIONG S,XISHUANG Y. History of Pu'er Tea and comparative study for the effect of its various extracts on lipid-lowering diet[J]. Pakistan Journal of Pharmaceutical Sciences. 2014,27(4):1 015-1 022.
[14] 陈亚蓝,王雪青,王怡雯, 等.普洱茶茶色素对HepG2细胞脂质代谢的影响及作用机理[J].食品科学,2017,38(17):203-209.
[15] LU CH, HWANG LS. Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line[J]. Food Chemistry, 2008,111(1):67-71.
[16] KUO KL, WENG MS, CHIANG CT, et al. Comparative studies on the hypolipidemic and growth suppressive effects of Oolong, Black, Pu-erh, and Green Tea leaves in rats[J].Journal of Agricultural and Food Chemistry, 2005,53(2):480-489.
[17] 包蓉,谷欣莹,陈佳.茶多酚提取纯化及其功能特性研究进展[J].安徽农学通报,2018,24(10):109-110;156.
[18] 章辰琛,杜婷婷.茶多酚医药价值的研究进展[J].医学食疗与健康,2018(4):174-175.
[19] 郑科勤.茶多酚的药理作用探讨[J].福建茶叶,2018,40(1):33-34.
[20] 李媛,苏美冬,刘佩.茶叶中儿茶素的高效液相色谱法研究[J].农产品加工(上半月),2017(8):29-30;34.
[21] 周露露,高原,牛知慧, 等.茶叶中儿茶素的药理作用及其研究进展[J].辽宁化工,2018,47(4):316-318;363.
[22] 张慧.不同产地普洱茶主要成分含量分析[J].云南农业,2017(11):49-51.
[23] ZUO Y, CHEN H, DENG Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector[J]. Talanta,2002,57(2):307-316.
[24] 王兴华,念波,段双梅, 等.数控与传统发酵普洱茶抗氧化活性与化学成分的比较[J].食品与发酵工业,2017,43(5):138-143.
[25] ZHANG L, LI N, MA ZZ, et al. Comparison of the chemical constituents of aged Pu-erh tea, ripened Pu-erh tea, and other teas using HPLC-DAD-ESI-MSn[J].Journal of Agricultural and Food Chemistry,2011,59(16):8 754-8 760.
[26] 陈星卉.表儿茶素没食子酸酯抑菌活性的研究[J].黑龙江医药科学,2017,40(6):129-130;132.
[27] TANAKA T, UMEKI H, NAGAI S, et al. Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder[J]. Food Chemistry,2012,134(1):276-281.
[28] 曾亮,田小军,罗理勇, 等.不同贮藏时间普洱生茶水提物的特征性成分分析[J].食品科学,2017,38(2):198-205.
[1] 占敏宣, 魏清江, 林雄, 李宏祥, 陈金印, 马巧利. PCA再分析采收成熟度对桃溪蜜柚贮藏品质变化模式的影响[J]. 食品与发酵工业, 2021, 47(9): 183-190.
[2] 杨玉宁, 陈松树, 高尔刚, 李园园, 潘秀珍, 刘红昌, 辛雪辉. 基于主成分分析的木通属植物果实品质评价[J]. 食品与发酵工业, 2021, 47(9): 191-200.
[3] 郑涛, 苏柯星, 丛桂芝, 陈明杰, 孙丙寅, 刘淑明. 树上干杏和梅杏果实品质分析与综合评价[J]. 食品与发酵工业, 2021, 47(9): 201-207.
[4] 姚文生, 蔡莹暄, 刘登勇, 张明成, 马双玉, 杨晶, 苟紫慧, 张浩. 基于HS-GC-IMS和HS-SPME-GC-MS的熏鸡腿肉挥发性风味成分分析[J]. 食品与发酵工业, 2021, 47(9): 253-261.
[5] 张敏, 余佶, 王琪琰, 张锦程, 游湘淘, 姚茂君, 麻成金. 藤茶感官特征定量描述分析与风味轮构建[J]. 食品与发酵工业, 2021, 47(8): 134-139.
[6] 刘丹丹, 李昕沂, 罗晶晶, 王启会, 罗静, 王海燕. 超高压微射流均质技术对猕猴桃果酒品质的影响[J]. 食品与发酵工业, 2021, 47(8): 165-169.
[7] 胡雪, 李锦松, 唐永清, 张良, 钱宇, 赵金松. 基于GC-MS结合化学计量学的浓香型白酒分类方法[J]. 食品与发酵工业, 2021, 47(8): 212-217.
[8] 郭金喜, 马燕, 范田丽, 杨光勇, 马君刚. 微波消解-电感耦合等离子体串联质谱法测定新疆黑枸杞红酒中微量元素的主成分分析[J]. 食品与发酵工业, 2021, 47(8): 243-249.
[9] 李晓朋, 曾欢, 林柳, 陶宁萍, 徐逍, 丛建华. 不同煎炸用油制备河豚鱼汤挥发性风味成分的差异性[J]. 食品与发酵工业, 2021, 47(7): 251-259.
[10] 张维, 付复华, 罗赛男, 赖灯妮, 朱向荣, 张群. 湖南红心猕猴桃品种品质评价及综合分析[J]. 食品与发酵工业, 2021, 47(5): 201-210.
[11] 杨学芳, 张继光, 吴万富, 吕世懂. 南瓜籽油中角鲨烯含量及特征指标比较[J]. 食品与发酵工业, 2021, 47(5): 217-223.
[12] 金文刚, 陈小华, 耿敬章, 姜鹏飞, 裴金金. 基于气相-离子迁移谱分析不同产地“汉中仙毫”气味指纹差异[J]. 食品与发酵工业, 2021, 47(5): 231-237.
[13] 张彦聪, 李昀哲, 张军, 唐磊. 柠檬椰汁复合果酒的工艺研究及香气特征分析[J]. 食品与发酵工业, 2021, 47(4): 173-181.
[14] 林诺怡, 成坚, 王琴, 马路凯, 梁嘉熹, 李素芬, 姚文倩, 刘袆帆. 柚皮蛋白的结构表征及细胞免疫活性初步研究[J]. 食品与发酵工业, 2021, 47(3): 59-65.
[15] 韦杰, 尹雅洁, 江伟, 宋层业, 魏灵, 廖志力, 韩兴林. 七种竹叶品种挥发性化合物的统计学评价[J]. 食品与发酵工业, 2021, 47(3): 181-187.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn