Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (10): 36-41    DOI: 10.13995/j.cnki.11-1802/ts.019608
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
黑曲霉H9-30全细胞催化合成低聚异麦芽糖
黄楠1,2, 周波1,2, 叶童1,2, 陈桂光1,2, 梁智群1,2, 曾伟1,2*
1(亚热带农业生物资源保护与利用国家重点实验室(广西大学),广西 南宁,530004)
2(广西大学 生命科学与技术学院,广西 南宁,530004)
Synthesis of isomaltooligosaccharides by whole-cell Aspergillus niger H9-30
HUANG Nan1,2, ZHOU Bo1,2, YE Tong1,2, CHEN Guiguang1,2, LIANG Zhiqun1,2, ZENG Wei1,2*
1(State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (Guangxi University), Nanning 530004, China)
2(College of Life Science and Technology, Guangxi University, Nanning 530004, China)
下载:  HTML   PDF (2220KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以黑曲霉H9-30全细胞为催化剂转化麦芽糖生产低聚异麦芽糖,通过单因素实验确定其摇瓶最佳转化条件为:温度48 ℃,初始pH值4.2,麦芽糖质量浓度为600 g/L,黑曲霉细胞添加量为15 g/L。此条件下,有效三糖(异麦芽糖、潘糖和异麦芽三糖)占总糖质量分数的50.5%,总低聚异麦芽糖含量为63.3%,达到低聚异麦芽糖工业生产标准。研究结果表明,利用黑曲霉全细胞催化生产低聚异麦芽糖具有较好的操作稳定性,生产IMO-50的半衰期达到20批次(10 d),有望应用于工业化生产低聚异麦芽糖。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄楠
周波
叶童
陈桂光
梁智群
曾伟
关键词:  低聚异麦芽糖  全细胞催化  黑曲霉    
Abstract: Isomaltooligosaccharides (IMOs) are a kind of functional oligosaccharides that have been widely used in food industries. A new procedure for IMOs preparation was developed by using whole-cell of Aspergillus niger H9-30 as a catalyst and maltose as substrate. The optimal reaction condition in shaking flasks was as follows: at 48 ℃ with an initial pH of 4.2, with 600 g/L maltose and 15 g/L A. niger H9-30. Under this condition, the yields of isomaltose, panose, and isomaltotriose accounted for 50.5% of total sugar, and total IMOs content accounted for 63.3%. It was also found that using whole-cell of A. niger to produce IMOs had good operational stability with the half-life reached 20 batches (10 d). In conclusion, A. niger H9-30 has potential use for industrial production of IMO.
Key words:  isomaltooligosaccharides    whole-cell catalysis    Aspergillus niger
收稿日期:  2018-12-12                出版日期:  2019-05-25      发布日期:  2019-06-17      期的出版日期:  2019-05-25
基金资助: 国家自然科学基金(31560448);广西自然科学基金(2016GXNSFAA380130)
作者简介:  硕士研究生(曾伟副研究员为通讯作者,E-mail:zengwei1987@gxu.edu.cn)。
引用本文:    
黄楠,周波,叶童,等. 黑曲霉H9-30全细胞催化合成低聚异麦芽糖[J]. 食品与发酵工业, 2019, 45(10): 36-41.
HUANG Nan,ZHOU Bo,YE Tong,et al. Synthesis of isomaltooligosaccharides by whole-cell Aspergillus niger H9-30[J]. Food and Fermentation Industries, 2019, 45(10): 36-41.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019608  或          http://sf1970.cnif.cn/CN/Y2019/V45/I10/36
[1] SEO S H, CHOI K H, HWANG S, et al. Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum α-glucosidase and its transglucosylation reaction with arbutin[J]. Journal of Molecular Catalysis B Enzymatic, 2011,72(3-4):305-312.
[2] CHEN R. Enzyme and microbial technology for synthesis of bioactive oligosaccharides: An update[J]. Applied Microbiology & Biotechnology, 2018,102(7):3 017-3 026.
[3] YAN Q J, HAN P, YANG S Q, et al. Purification and characterization of a novel α-glucosidase from Malbranchea cinnamomea[J]. Biotechnology Letters, 2015, 37(6):1 279-1 286.
[4] MADSEN L R, STANLEY S, SWANN P, et al. A survey of commercially available isomaltooligosaccharide-based food ingredients[J]. Journal of Food Science, 2017, 82(2):401-408.
[5] 陈桂光, 李玮,齐辉连,等. 黑曲霉低聚异麦芽糖高产菌株的诱变选育[J]. 食品工业科技, 2011(8):185-187.
[6] SORNDECH W, SAGNELLI D, BLENNOW A, et al. Combination of amylase and transferase catalysis to improve IMO compositions and productivity[J]. LWT-Food Science and Technology, 2017,79:479-486.
[7] RUDEEKULTHAMRONG P, SAWASDEE K, KAULPIBOON J, et al. Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes[J]. Biotechnology & Bioprocess Engineering, 2013,18(4):778-786.
[8] PAN Y C, LEE W C. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells[J]. Biotechnology & Bioengineering, 2010,89(7):797-804.
[9] 吴孔阳, 齐宗献,黄桂华,等. 一株产α-葡萄糖苷酶菌株的鉴定和选育[J]. 食品研究与开发, 2012,33(12):145-149.
[10] CHEN G G, LI W, ZHANG Y K, et al. A high-throughput method for screening of Aspergillus niger mutants with high transglycosylation activity by detecting non-fermentable reducing sugar[J]. World Journal of Microbiology & Biotechnology, 2011,27(6):1 519-1 523.
[11] MA M, OKUYAMA M, SATO M, et al. Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation[J]. Applied Microbiology & Biotechnology, 2017,101(16):6 399-6 408.
[12] KOBAYASHI I, TOKUDA M H, HASHIMOTO H, et al. Purification and characterization of a new type of alpha-glucosidase from Paecilomyces lilacinus that has transglucosylation activity to produce alpha-1,3- and alpha-1,2-linked oligosaccharides[J]. Bioscience Biotechnology & Biochemistry, 2003,67(1):29-35.
[13] YAMASAKI Y, SUZUKI Y, OZAWA J. Three forms of α-glucosidase and a glucoamylase from Aspergillus awamori[J]. Journal of the Agricultural Chemical Society of Japan, 1977,41(11):2 149-2 161.
[14] ZHANG L, SU Y L, ZHENG Y, et al. Sandwich-structured enzyme membrane reactor for efficient conversion of maltose into isomaltooligosaccharides[J]. Bioresource Technology, 2010,101(23):9 144-9 149.
[15] HUANG Z, LI Z, SU Y, et al. Continuous production of isomalto-oligosaccharides by thermo-inactivated cells of Aspergillus niger J2 with coarse perlite as an immobilizing material[J]. Applied Biochemistry and Biotechnology, 2018,185(4):1 088-1 099.
[16] BASU A, MUTTURI S, PRAPULLA S G. Production of isomaltooligosaccharides (IMO) using simultaneous saccharification and transglucosylation from starch and sustainable sources[J]. Process Biochemistry, 2016,51(10):1 464-1 471.
[17] 周康, 刘冬梅,范梦珂,等. Aspergillus niger CGMCC No.6640全细胞生物转化制备蔗果低聚糖[J]. 现代食品科技, 2013,29(8):1 967-1 972.
[18] 章爱媛.黑曲霉RAF106全细胞生物转化茶多酚的研究[D]. 广州:华南农业大学, 2016.
[19] 刘国生, 邢善涛,王建琨,等. 埃希菌全细胞转化阿糖尿苷合成阿糖腺苷[J]. 中国医药工业杂志, 2010,41(6):416-419.
[20] OJHA S, MISHRA S, CHAND S. Production of isomalto-oligosaccharides by cell bound α-glucosidase of Microbacterium sp.[J]. LWT-Food Science and Technology, 2015, 60(1):486-494.
[21] 徐燕杉.黑曲霉α-葡萄糖苷酶在毕赤酵母的表面展示及催化合成低聚异麦芽糖的研究[D]. 广州:华南理工大学, 2017.
[22] CHEN G G, LI W, ZHANG Y K, et al. A high-throughput method for screening of Aspergillus niger mutants with high transglycosylation activity by detecting non-fermentable reducing sugar[J]. World Journal of Microbiology & Biotechnology, 2011,27(6):1 519-1 523.
[23] 岳振峰, 彭志英. 固定化酶法生产低聚异麦芽糖的研究[J]. 食品与发酵工业, 2002,28(3):6-9.
[24] VETERE A, GAMINI A, CAMPA C, et al. Regiospecific transglycolytic synthesis and structural characterization of 6-O-α-glucopyranosyl-glucopyranose (Isomaltose)[J]. Biochemical and Biophysical Research Communications, 2000,274(1):99-104.
[25] KATO N, SUYAMA S, SHIROKANE M, et al. Novel alpha-glucosidase from Aspergillus nidulans with strong transglycosylation activity[J]. Applied & Environmental Microbiology, 2002,68(3):1 250-1 256.
[26] MACKENZIE L F, WANG Q, WARREN R A J, et al. Glycosynthases: Mutant glycosidases for oligosaccharide synthesis[J]. Journal of the American Chemical Society, 1998,120(22):5 583-5 584.
[1] 蔡程山, 王雨, 白飞荣, 翟磊, 张天赐, 胡海蓉, 姚粟. 黑曲霉Aspergillus niger全基因组DNA提取方法的改良与比较[J]. 食品与发酵工业, 2020, 46(6): 13-18.
[2] 韩小敏, 李凤琴. 黑曲霉群菌种多相分类和鉴定方法最新研究进展[J]. 食品与发酵工业, 2020, 46(23): 279-285.
[3] 赵昊, 全莉, 于佳俊, 张晓蒙, 马文瑞, 武运, 薛洁. 新疆酿酒葡萄中赭曲霉毒素A来源菌的筛选及其产毒条件研究[J]. 食品与发酵工业, 2020, 46(19): 35-41.
[4] 林丽, 邓倩, 罗琳, 康渝接, 严唯玮, 何利, 敖晓琳, 刘书亮. 代谢多种低聚糖乳酸菌的筛选鉴定及其部分益生特性研究[J]. 食品与发酵工业, 2020, 46(17): 80-86.
[5] ITUZE KUBANA Marie Claudine, 乔郅钠, 徐美娟, 陈旭升, 杨套伟, 张显, 邵明龙, 饶志明. 白色链霉菌ε-聚赖氨酸合酶的异源表达及重组菌全细胞合成ε-聚赖氨酸的条件优化[J]. 食品与发酵工业, 2020, 46(16): 1-6.
[6] 张赛兰, 李婷, 程中一, 周丽, 周哲敏, 刘中美, 崔文璟. 新型耐热腈水合酶的异源表达及其催化工艺研究[J]. 食品与发酵工业, 2020, 46(14): 108-113.
[7] 沈洋, 吕雪芹, 林璐, 李江华, 堵国成, 刘龙. 蔗糖磷酸化酶的半理性设计及生产α-熊果苷的条件优化[J]. 食品与发酵工业, 2020, 46(13): 1-9.
[8] 潘菲, 董彪, 刘婷, 陈妍, 陈可丹, 黄冰静, 万茵, 刘成梅, 张鹏, 付桂明. 黑曲霉Aspergillus niger NCUF413.1对特香型白酒酿造出酒率和风味的影响[J]. 食品与发酵工业, 2020, 46(1): 23-29.
[9] 苑馨瑶, 田康明, 金鹏, 程磊, 王正祥. 黑曲霉低聚葡萄糖氧化酶的分子克隆与生化特征[J]. 食品与发酵工业, 2020, 46(1): 30-35.
[10] 朱强, 王瑞鑫, 吴铖迪, 夏艳秋. 黑曲霉SP7-2固态发酵产生淀粉糖化酶工艺优化[J]. 食品与发酵工业, 2019, 45(8): 98-102.
[11] 蒋晓敏, 王贺, 王允祥, 钱永常, 尹良鸿, 范丽. β-半乳糖苷酶的微生物细胞表面展示及其应用[J]. 食品与发酵工业, 2019, 45(7): 294-300.
[12] 王鑫, 金鹏, 宋鹏, 董自星, 刘晓光, 王正祥. 黑曲霉酸性蛋白酶EXPA的克隆表达与酶学性质解析[J]. 食品与发酵工业, 2019, 45(3): 40-46.
[13] 丛珊滋, 程磊, 田康明, 李梦迪, 路福平, 王正祥. 黑曲霉脂肪酶CutA的芳香酯合成活性[J]. 食品与发酵工业, 2019, 45(22): 1-5.
[14] 丛珊滋, 田康明, 张新, 路福平, 王正祥. 黑曲霉脂肪酶tglE的基因克隆与生化特征解析[J]. 食品与发酵工业, 2019, 45(21): 1-7.
[15] 叶文琪, 薛岚, 王超, 崔文璟, 周哲敏, 刘中美. 昆虫来源L-天冬氨酸-α-脱羧酶突变体的酶学性质表征[J]. 食品与发酵工业, 2019, 45(19): 63-67.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn