Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 58-64    DOI: 10.13995/j.cnki.11-1802/ts.019652
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
Nisin、ε-聚赖氨酸和温度对枯草芽孢杆菌失活动力学的影响
郭全友1*, 刘玲1,2, 李保国2, 姜朝军1
1(中国水产科学研究院 东海水产研究所,上海,200090)
2(上海理工大学 医疗器械与食品学院,上海,200093)
Effects of nisin, ε-polylysine, and temperature on inactivation kineticsof Bacillus subtilis
GUO Quanyou1*, LIU Ling1,2, LI Baoguo2, JIANG Chaojun1
1(East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Shanghai 200090,China)   
2(School of Medical Instrument and Food Engineering,University of Shanghai for Scienceand Technology,Shanghai 200093,China)
下载:  HTML   PDF (1140KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以源自熟制对虾虾仁的优势腐败菌枯草芽孢杆菌为对象,对温度(25、37和45 ℃)、Nisin和ε-聚赖氨酸在酸性环境(pH=5)作用下其失活效应进行分析,并采用线性模型、Weibull模型、Log-logistic模型对不同处理条件下枯草芽孢杆菌的失活动力学进行拟合和评价。结果表明:25~45 ℃时,枯草芽孢杆菌失活量随Nisin和ε-聚赖氨酸的浓度变化而变化。温度由25 ℃升高至45 ℃,Nisin和ε-聚赖氨酸作用下枯草芽孢杆菌失活量呈先升后降趋势,37 ℃时失活效果最佳,25 ℃和45 ℃时,ε-聚赖氨酸作用下的失活效果优于Nisin,37 ℃时,两者差异不显著。处理180 min终点枯草芽孢杆菌数均降至0。Log-logistic模型与Weibull模型均能很好拟合其失活过程,而线性模型难以描述失活动力学,Log-logistic模型拟合优度优于Weibull模型。通过构建虾源枯草芽孢杆菌在温度、Nisin和ε-聚赖氨酸作用下失活模型,为优化靶向生物杀菌和延长水产品货架期等提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭全友
刘玲
李保国
姜朝军
关键词:  枯草芽孢杆菌  Nisin  ε-聚赖氨酸  温度  失活    
Abstract: This study was constructed to study the inactivation effects of temperature (25, 37, and 45 ℃), nisin, and ε-polylysine on Bacillus subtilis isolated from cooked shrimps under acidic environment (pH=5). Linear model, weibull model, and log-logistic model were used to fit and evaluate inactivation kinetics of B. subtilis under different treatment conditions. The results showed that the inactivation number of B. subtilis increased with increasing concentrations of nisin and ε-polylysine at 25-45 ℃. When the temperature increased from 25 ℃ to 45 ℃, the inactivation effects of nisin and ε-polylysine increased and then decreased, and both of them showed the best effects at 37 ℃. Additionally, at 25 ℃ and 45 ℃, ε-polylysine showed better inactivation effects than nisin. Furthermore, the number of B. subtilis after 180 min treatment reduced to zero. It was difficult to describe the inactivation kinetics using linear model, but both log-logistic model and weibull model fitted well, and log-logistic model was better. By constructing an inactivation model of B. subtilis based on the effects of temperature, nisin, and ε-polylysine, this study provides a basis for optimizing targeted bio-sterilization process and prolonging the shelf-life of aquatic products.
Key words:  Bacillus subtilis    nisin    ε-polylysine    temperature    inactivation
收稿日期:  2018-12-17                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
基金资助: 中央级公益性科研院所基本科研业务费专项资金(2016M04);国家自然科学基金资助项目(31871872);上海市自然科学基金(16ZR1444900)
通讯作者:  研究员(E-mail:dhsguoqy@163.com)   
引用本文:    
郭全友,刘玲,李保国,等. Nisin、ε-聚赖氨酸和温度对枯草芽孢杆菌失活动力学的影响[J]. 食品与发酵工业, 2019, 45(11): 58-64.
GUO Quanyou,LIU Ling,LI Baoguo,et al. Effects of nisin, ε-polylysine, and temperature on inactivation kineticsof Bacillus subtilis[J]. Food and Fermentation Industries, 2019, 45(11): 58-64.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019652  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/58
[1] 钱静亚,马海乐,李树君,等. 温度、超声、nisin协同脉冲磁场杀灭枯草芽孢杆菌的研究[J]. 现代食品科技, 2013,29(12): 2 970-2 974.
[2] OYELESE O A, OPATOKUN M O. Exposure time on bacteria flora/count and shelf life of canned sardine (Sardinella pilchardus) under ambient and cold storage conditions[J]. Journal of Food Processing & Preservation, 2010, 31(5): 517-530.
[3] 娄永江,柳丽. 即食海蜇中特定腐败菌的分离及PCR检测[J]. 食品工业科技, 2014, 35(12): 207-209.
[4] 谢婷婷,王应妮,陈秋骏,等. 胀袋鲍汁中腐败菌的分离与鉴定[J]. 中国调味品, 2015,40(5): 27-29.
[5] 侯克会. 外源性羟基自由基杀灭枯草芽孢杆菌及芽孢研究[D]. 镇江:江苏大学, 2011.
[6] 刘书成,郭明慧,黄万有,等. 超高压技术在虾类保鲜与加工中的应用[J]. 食品工业科技, 2015,36(9): 376-383.
[7] 赵永强,张红杰,李来好,等. 水产品非热杀菌技术研究进展[J]. 食品工业科技, 2015, 36(11): 394-399.
[8] WANG J J,LIN T,LI J B,et al. Effect of acidic electrolyzed water ice on quality of shrimp in dark condition[J]. Food Control, 2014, 35(1): 207-212.
[9] LIU H X,PEI H B, HAN Z N,et al. The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-Polylysine and nisin against Bacillus subtilis[J]. Food Control, 2015, 47(1): 444-450.
[10] 倪清艳,李燕,张海涛. ε-聚赖氨酸的抑菌作用及在保鲜中的应用[J]. 食品科学, 2008, 29(9): 102-105.
[11] 杨旭艳,王爱敏,胡国华. 微生物源防腐剂ε-聚赖氨酸的研究进展[C]. 上海:中国食品添加剂和配料展览会, 2011:172-176.
[12] PAJOHI M R,TAJIK H,FARSHID A A,et al. Synergistic antibacterial activity of the essential oil of Cuminum cyminum L. seed and nisin in a food model[J]. Journal of Applied Microbiology, 2011, 110(4): 943-951.
[13] MARCOS,ANTONIO,NEVES,et al. Antimicrobial oil-in-water nanoemulsions: Synergistic effect of nisin and Carvacrol against Bacillus subtilis[J]. 食品科学与工程:英文版(2159-5828), 2016(2): 63-74.
[14] 李曼. Nisin与PlyG作用于芽孢杆菌的初步研究[D]. 北京:中国人民解放军军事医学科学院, 2008.
[15] CHI H,HELGE H. Synergistic antimicrobial activity between the broad spectrum Bacteriocin garvicin KS and Nisin, farnesol and polymyxin B against gram-positive and gram-negative bacteria[J]. Current Microbiology, 2018, 75(3): 272-277.
[16] CHEDIA A,ZEINEB R,SLAH M,et al. Inactivation of Bacillus sporothermodurans spores by nisin and temperature studied by design of experiments in water and milk[J]. Food Microbiology, 2014, 38(2): 270-275.
[17] 郭全友,王晓晋,姜朝军. 微波杀灭虾源地衣芽孢杆菌孢子特性及效果[J]. 农业工程学报, 2018, 34(21): 281-287.
[18] RAO L,YONGTAO W,FANG C,et al. The synergistic effect of high pressure CO2 and Nisin on inactivation of Bacillus subtilis spores in aqueous solutions[J]. Frontiers in Microbiology, 2016, 7:1 507.
[19] BAG A,CHATTOPADHYAY R R. Synergistic antibacterial and antibiofilm efficacy of Nisin in combination with p-Coumaric acid against foodborne bacteria Bacillus cereus and Salmonella typhimurium[J]. Letters in Applied Microbiology, 2017, 65(5): 366-372.
[20] 胡思卓,占文婷,徐圆融,等. 蜡样芽孢杆菌及其芽孢的杀菌技术和动力学研究进展[J]. 食品工业科技, 2017, 38(4): 370-378.
[21] CHEN H Q. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk[J]. Food Microbiology, 2007, 24(3): 197-204.
[22] 叶章颖,祁凡雨,裴洛伟,等. 微酸性电解水对虾仁的杀菌效果及其动力学[J]. 农业工程学报, 2014, 30(3): 223-230.
[23] MANUEL G,PANAGIOTIS N S,MARJA L H. A modified Weibull model for describing the survival of Campylobacter jejuni in minced chicken meat[J]. International Journal of Food Microbiology, 2009, 136(1): 52-58.
[24] JAGANNATH A,TSUCHIDO T,MEMBRéJ M. Comparison of the thermal inactivation of Bacillus subtilis spores in foods using the modified Weibull and Bigelow equations[J]. Food Microbiology, 2005, 22(2-3): 233-239.
[25] COLLADO J,FERNÁNDEZ A,RODRIGO M,et al. Kinetics of deactivation of Bacillus cereus spores[J]. Food Microbiology, 2003, 20(5): 545-548.
[26] 郭全友,王晓晋,姜朝军. 南美白对虾即食虾仁常温贮藏品质变化与货架期研究[J]. 食品与机械, 2018, 6(3): 42-47.
[27] 高芳,李兴民,马鹏飞,等. 超高压协同温度处理对绿色魏斯氏菌的失活动力学[J]. 食品科学, 2018, 39(15): 38-47.
[28] CHEN H Q,DALLAS G H. Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk[J]. Innovative Food Science & Emerging Technologies, 2004, 5(3): 269-276.
[29] MARTIN B C,KENNETH W D,GARY M,et al. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes[J]. Journal of Industrial Microbiology, 1993, 12(3-5): 232-239.
[30] 王军,董庆利,丁甜. 预测微生物模型的评价方法[J]. 食品科学, 2011, 32(21): 268-272.
[31] 张百刚,高华. Nisin抑菌作用的研究[J]. 中国乳品工业, 2008, 36(10): 26-28.
[32] MENG J, GONG Y, QIAN P,et al. Combined effects of ultra-high hydrostatic pressure and mild heat on the inactivation of Bacillus subtilis[J]. LWT - Food Science and Technology, 2015, 68: 59-66.
[33] EVELYN E,FILIPA V M S. Thermosonication versus thermal processing of skim milk and beef slurry: Modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores[J]. Food Research International, 2015, 67: 67-74.
[34] 卢蓉蓉,钱平,何红艳,等. 超高压杀灭低酸性食品中耐压菌的动力学模型[J]. 农业工程学报, 2010, 26(9): 350-356.
[1] 孙杨, 王丽君, 杨套伟, 付维来, 易敢峰, 饶志明. 氧甲基转移酶编码基因ploy (A)加尾促进粘质沙雷氏菌合成灵菌红素能力研究[J]. 食品与发酵工业, 2021, 47(9): 49-56.
[2] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[3] 钱韻芳, 林婷, 曹维, 叶晶鑫, 谢晶, 杨胜平. 模拟冷链流通中温度波动对腐败希瓦氏菌的生长及其腐败产物的影响[J]. 食品与发酵工业, 2021, 47(9): 100-106.
[4] 唐璎, 邓展瑞, 黄佳, 杨晓楠. 黄曲霉毒素B1降解菌株的鉴定及降解产物研究[J]. 食品与发酵工业, 2021, 47(7): 64-70.
[5] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[6] 张亚楠, 申培立, 牛丹丹, 田康明, KUGEN PERMAUL, SUREN SINGH, 王正祥. 普鲁兰酶N467G突变体的酶学性质分析[J]. 食品与发酵工业, 2021, 47(5): 7-11.
[7] 闫欣鹏, 张润光, 梁琪琪, 郭晓成, 姚岗, 李玉英, 张有林. 低温结合1-MCP处理对突尼斯软籽石榴采后品质的影响[J]. 食品与发酵工业, 2021, 47(5): 147-155.
[8] 陈珂, 刘丽莉, 郝威铭, 杨晓盼, 李媛媛. 喷雾干燥入口温度对蛋清蛋白流变和结构特性的影响[J]. 食品与发酵工业, 2021, 47(2): 15-21.
[9] 汪冬冬, 鲍永碧, 管锐, 唐垚, 明建英, 李嘉仪, 黄润秋, 陈功, 张其圣. 温度对甘蓝泡菜发酵过程中风味的影响[J]. 食品与发酵工业, 2021, 47(2): 233-240.
[10] 杨心萍, 宋词, 张伟豪, 刘艳, 王洲, 薛正莲. 常压室温等离子体与5-溴尿嘧啶复合诱变及快速选育腺苷高产菌株[J]. 食品与发酵工业, 2020, 46(9): 73-77.
[11] 张大伟, 刘德华, 黄钦钦, 田亚平. 食品级高产亮氨酸氨肽酶重组Bacillus subtilis的构建和发酵优化[J]. 食品与发酵工业, 2020, 46(8): 1-6.
[12] 丁玉先, 张娜, 陈爱强. 采后果蔬热处理条件的传热特性分析[J]. 食品与发酵工业, 2020, 46(7): 188-193.
[13] 刘祥雨, 覃小丽, 钟金锋. 采用分子动力学模拟研究温度对乳球蛋白稳定性的影响[J]. 食品与发酵工业, 2020, 46(7): 89-96.
[14] 简东振, 周志磊, 巩敏, 蒋彰, 朱胜虎, 李信, 韩笑, 聂旭东, 毛健. 镇江香醋陈酿过程中温度和氧气对挥发性风味物质的影响[J]. 食品与发酵工业, 2020, 46(7): 75-82.
[15] 胡凡, 宿玲恰, 吴敬. Thermobifida fusca麦芽三糖淀粉酶的重组表达及其在麦芽三糖制备中的应用[J]. 食品与发酵工业, 2020, 46(5): 23-30.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn