Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 259-267    DOI: 10.13995/j.cnki.11-1802/ts.019960
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
基于纳米材料的可视化比色检测技术在食源性致病菌检测中的应用研究进展
周静1,2, 田风玉1,2, 焦必宁1,2*, 何悦1,2*
1(西南大学,柑桔研究所,重庆,400712)
2(农业部柑桔及苗木质量监督检验测试中心,重庆,400712)
Applications of visual colorimetric detection methods based onnanomaterials in detecting foodborne pathogens
ZHOU Jing1,2, TIAN Fengyu1,2, JIAO Bining1,2*, HE Yue1,2*
1(Citrus Research Institute, Southwest University, Chongqing 400712, China)
2(Quality Supervision and Testing Centre for Citrus and Seedling, Ministry of Agriculture, Chongqing 400712, China)
下载:  HTML   PDF (1152KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 食源性致病菌是一类以食物为载体,引起人体急、慢性中毒,给人们的生命健康带来损害的致病性细菌。传统的食源性致病菌检测方法通常耗时费力且价格昂贵。基于纳米材料的可视化比色检测技术灵敏度高、特异性强、操作简单、快速可靠,引起了人们的广泛关注。一些纳米材料具有类似过氧化物酶的活性,在其表面性质发生改变后会发生相应的颜色变化,还有一些自身色彩明艳的纳米材料,可通过特异性结合在食源性致病菌的表面实现比色信号的放大。该文综述了近几年基于纳米材料的可视化比色检测技术在食源性致病菌中的应用及这些可视化比色检测技术的优缺点,以期对新的可视化比色检测技术的构建和开发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周静
田风玉
焦必宁
何悦
关键词:  可视化比色检测技术  纳米材料  食源性致病菌    
Abstract: Foodborne pathogens are a major threat to human health, as they are responsible for many acute and chronic foodborne diseases. Traditional techniques to detect foodborne pathogens are time-consuming, labor-intensive and expensive, which limit their applications. In comparison, visual detection techniques based on nanomaterials have distinctive advantages, including high sensitivity, high specificity, simple operation, fast and reliable. Some nanomaterials have peroxidase-like activity and some nanomaterials have bright colors and can specifically bind to the surface of bacteria to achieve visual detection by amplifying colorimetric signals. Besides, some nanomaterials also change colors when their surface properties changed. This paper reviewed recent applications of nanomaterials-based visual detection techniques in detecting foodborne pathogens, and the advantages and disadvantages of different types of visualization detection techniques were also highlighted. This review aimed to provide a reference for constructing and developing new visualization techniques.
Key words:  visualization detection techniques    nanomaterials    foodborne pathogens
收稿日期:  2019-01-15                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
基金资助: 国家自然科学基金(21405125);国家农产品质量安全风险评估重大专项(GJFP2018013,GJFP2018004,GJFP2017 013,GJFP2017004)
通讯作者:  硕士研究生(何悦副研究员和焦必宁研究员共为通讯作者,E-mail:yuehe@cric.cn,jiaobining@cric.cn)   
引用本文:    
周静,田风玉,焦必宁,等. 基于纳米材料的可视化比色检测技术在食源性致病菌检测中的应用研究进展[J]. 食品与发酵工业, 2019, 45(11): 259-267.
ZHOU Jing,TIAN Fengyu,JIAO Bining,et al. Applications of visual colorimetric detection methods based onnanomaterials in detecting foodborne pathogens[J]. Food and Fermentation Industries, 2019, 45(11): 259-267.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019960  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/259
[1] LIM M C,KIM Y R.Analytical applications of nanomaterials in monitoring biological and chemical contaminants in food[J].J Microbiol Biotechnol,2016,26(9):1 505-1 516.
[2] WHO. Pandemic and Epidemic Diseases[EB/OL].[2014-11]. http://www.who.int/csr/disease/en/.
[3] TACK DANIELLE M,MARDER ELLYN P,GRIFFIN PATRICIA M,et al.Preliminary incidence and trends of infections with pathogens transmitted commonly through food-foodborne diseases active surveillance network [J].MMWR Morbidity and Mortality Weekly Report,2018,67(11):324-328.
[4] WOLTER ANNE,NIESSNER REINHARD,SEIDEL MICHAEL.Detection of Escherichia coli O157∶H7,Salmonella typhimurium,and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system[J].Anal Chem,2008,80(15):5 854-5 863.
[5] 张志炬,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000:111-112.
[6] GAO Zhuangqiang,DENG Kaichao,WANG Xudong,et al.High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod[J].ACS Appl Mater Interfaces,2014,6(20):18 243-18 250.
[7] WANG Changshun,KAN Caixia,NI Yuan,et al.Facile preparation and growth mechanism of new-type gold nanoplates[J].Acta Physico-Chimica Sinica,2014,30(1):194-204.
[8] GAO Lizeng,YAN Xiyun.Discovery and current application of nanozyme[J].Progress in Biochemistry & Biophysics,2013,40(10):892-902.
[9] CHOI Y,HWANG J H,LEESANG Y,et al.Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses[J].Small Methods,2018,2(4):1 700 351.
[10] RAY C,DUTTA S,SARKAR S,et al.Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing[J].Journal of Materials Chemistry B,2014,2(36):6 097-6 150.
[11] JIANG Tao,SONG Yang,WEI Tianxiang,et al.Sensitive detection of Escherichia coli O157∶H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification[J].Biosens Bioelectron,2016,77:687-694.
[12] WU Wenhe,ZHANG Jie,ZHENG Meiqin,et al.An aptamer-based biosensor for colorimetric detection of Escherichia coli O157∶H7 [J].PLoS ONE,2012,7(11):e48999.
[13] LIN Youhui,Ren Jinsong,QU Xiaogang,et al.Catalytically active nanomaterials:A promising candidate for artificial enzymes[J].Accounts of Chemical Research,2014,47(4):1 097-1 105.
[14] WU Shijia,DUAN Nuo,QIU Yueting,et al.Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics[J].Int J Food Microbiol,2017,261:42-48.
[15] GAO L, ZHUANG L, FAUNIE J,et al.Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J].Nat Nanotechnol, 2007,2(9):577-583.
[16] SU Haichao,ZHAO Han,QIAO Fengmin,et al.Colorimetric detection of Escherichia coli O157∶H7 using functionalized Au@Pt nanoparticles as peroxidase mimetics[J].Analyst,2013,138(10):3 026-3 031.
[17] WANG Shuqin,DENG Wenfang,YANG Lu,et al.Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus[J].ACS Appl Mater Interfaces,2017,9(29):24 440-24 445.
[18] PANDIAN C J,PALANIVEL R,BALASUNDARAM U,et al.Green synthesized nickel nanoparticles for targeted detection and killing of S.typhimurium[J].J Photochem Photobiol B,2017,174:58-69.
[19] LI Junnan,LIU Wenqi,WU Xiaochun,et al.Mechanism of pH-switchable peroxidase and catalase-like activities of gold,silver,platinum and palladium[J].Biomaterials,2015,48:37-44.
[20] JV Yun,LI Baoxin,CAO Rui,et al.Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection[J].Chemical Communications,2010,46(42):8 017-8 019.
[21] NANGIA Y, KUMAR J, KAUSHAL B F,et al.Palladium@gold bimetallic nanostructures as peroxidase mimic for development of sensitive fluoroimmunoassay[J]. Analytica Chimica Acta,2012,751: 140-145.
[22] WU Wenhe,LI Jun,PAN Dun,et al.Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella typhimurium[J].ACS Appl Mater Interfaces,2014,6(19):16 974-16 981.
[23] 李卓轩,封开政,张薇,等.纳米酶的催化机制及应用[J].科学通报,2018,63(21):32-43.
[24] SU Li,FENG Jie,ZHOU Ximin,et al.Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles[J].Anal Chem,2012,84(13):5 753-5 758.
[25] BALA R,SHARMA R K,WANGOO N,et al.Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate[J].Anal Bioanal Chem,2016,408(1):333-338.
[26] HARRIS N, FORD MICHAEL J ,MULVANEY P,et al.Tunable infrared absorption by metal nanoparticles:The case for gold rods and shells[J].Gold Bulletin,2008,41(1):5-14.
[27] 阎锡蕴.纳米材料新特性及生物医学应用[M].北京:科学出版社,2014.
[28] ZHENG Lingyan,CAI Gaozhe,WANG Siyuan,et al.A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157∶H7 using gold nanoparticle aggregation and smart phone imaging[J].Biosensors and Bioelectronics,2019,124-125:143-149.
[29] MINH PHUONG N B,AHMED S,ABBAS A,et al.Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay[J].Nano Lett,2015,15(9):6 239-6 246.
[30] SINGH P,GUPTA R,CHOUDHARY M,et al.Drug and nanoparticle mediated rapid naked eye water test for pathogens detection[J].Sensors and Actuators B:Chemical,2018,262:603-610.
[31] TATON T,MIRKIN C,LETSINGER R,et al.Scanometric DNA array detection with nanoparticle probes[J].Science,2000,289(5 485):1 757-1 760.
[32] ZHANG Chao,YIN Anxiang,JIANG Ruibin,et al.Time-temperature indicator for perishable products based on kinetically programmable Ag overgrowth on Au nanorods[J].ACS NANO,2013,7(5):4 561-4 568.
[33] CHEN JUHONG, JACKSON ANGELYVA A , ROTELLO VINCENT M ,et al.Colorimetric detection of Escherichia coli based on the enzyme-induced metallization of gold nanorods[J].Small,2016,12(18):2 469-2 475.
[34] WANG Xudong,CHEN Xi, XIE Zhaoxiong,et al.Reversible optical sensor strip for oxygen[J].Angewandte Chemie-international Edition,2008,47(39):7 450-7 453.
[35] PAVLOV V,XIAO Y,SHLYAHOVSKY B,et al.Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin[J].Journal of the American Chemical Society,2004,126(38):11 768-11 769.
[36] LI X X, CAO C, HAN S J,et al.Detection of pathogen based on the catalytic growth of gold nanocrystals[J].Water Res,2009,43(5):1 425-1 431.
[37] CAO C,GONTARD L C, TRAM L L T,et al.Dual enlargement of gold nanoparticles:from mechanism to scanometric detection of pathogenic bacteria[J].Small,2011,7(12):1 701-1 708.
[38] SUNG Y J,SUK H J,SUNG H Y,et al.Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk[J].Biosens Bioelectron,2013,43:432-439.
[39] JUNG YELIM,JUNG C,PARAB H,et al.Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles[J].Biosens Bioelectron,2010,25(8):1 941-1 946.
[40] VERMA M,ROGOWSKI J.Colorimetric biosensing of pathogens using gold nanoparticles[J].Biotechnol Adv,2015,33(6 Pt 1):666-680.
[41] LI HX,ROTHBERG L.Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles[J].Proceedings of The National Academy of Sciences of The United States of America,2004,101(39):14 036-14 039.
[42] MCVEY C,HUANG F,ELLIOTT C,et al.Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA[J].Biosens Bioelectron,2017,92:502-508.
[43] WEN C Y, HU J , ZHANG Z L ,et al.One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres[J].Anal Chem,2013,85(2):1 223-1 230.
[44] LIU Pei,HAN Lei,WANG Fei,et al.Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid,selective and sensitive colorimetric biosensing of Staphylococcus aureus[J].Biosens Bioelectron,2016,82:195-203.
[45] WEI Hui,CHEN Chaogui,HAN Bingyan,et al.Enzyme colorimetric assay using unmodified silver nanoparticles[J].Analytical Chemistry,2008,84(18):7 051-7 055.
[46] ZHENG Laibao,QI Peng,ZHANG Dun,et al.A simple,rapid and cost-effective colorimetric assay based on the 4-mercaptophenylboronic acid functionalized silver nanoparticles for bacteria monitoring[J].Sensors and Actuators B:Chemical,2018,260:983-989.
[47] LEE J S, LYTTON-JEAN A K R ,HURST S J,et al.Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties[J].Nano Letters,2007,7(7):2 112-2 115.
[48] KOLUSHEVA R J S.Biomolecular sensing with colorimetric vesicles[J].Top Curr Chem,2007,277:155-180.
[49] OLIVEIRA D TAILA V,SOARES N D F F,SILVA D J,et al.Development of PDA/Phospholipids/Lysine vesicles to detect pathogenic bacteria[J].Sensors and Actuators B Chemical,2013,188:385-392.
[50] CHEN Yong,NIE Xiaobo,CUI Xiaoyang,et al.Direct colorimetric biosensors from polydiacetylenes[J].Current Organic Chemistry,2011,15(4):518-533.
[51] SUN Qian,ZHAO Guangying,DOU Wenchao,et al.Blue silica nanoparticle-based colorimetric immunoassay for detection of Salmonella pullorum[J].Anal.Methods,2015,7(20):8 647-8 654.
[52] ALAMER S,EISSA S,CHINNAPPAN R,et al.A rapid colorimetric immunoassay for the detection of pathogenic bacteria on poultry processing plants using cotton swabs and nanobeads[J].Mikrochim Acta,2018,185(3):164.
[53] SHIN C,LEE H N,RYU J S,et al.Rapid naked-eye detection of Gram-positive bacteria by vancomycin-based nano-aggregation[J].RSC Advances,2018,8(44):25 094-25 103.
[54] WANG Yi,LI Hui,WANG Yan,et al.Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes[J].Int J Nanomedicine,2017,12:473-486.
[55] SUAIFAN GHADEER A R Y,ALHOGAIL S,ZOUROB M,et al.Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7[J].Biosens Bioelectron,2017,92:702-708.
[56] SUAIFAN GHADEER A R Y,ALHOGAIL S,ZOUROB M,et al.Rapid and low-cost biosensor for the detection of Staphylococcus aureus[J].Biosens Bioelectron,2017,90:230-237.
[57] ALHOGAIL S,SUAIFAN GHADEER A R Y,ZOUROB M,et al.Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen[J].Biosens Bioelectron,2016,86:1 061-1 066.
[1] 董晶, 卢鑫, 郭威, 杨倩, 张伟. 等温扩增技术在食源性致病菌检测中的研究进展[J]. 食品与发酵工业, 2021, 47(8): 256-260.
[2] 王嫦嫦, 郑思洁, 战艺芳, 夏定, 白向茹, 王利华, 姚琪, 李婷婷. 结合纳米材料的适配体传感器在重金属检测中的应用研究进展[J]. 食品与发酵工业, 2021, 47(8): 283-289.
[3] 冯林, 陈雪岚. 新型纳米材料与噬菌体展示技术在真菌毒素检测中的应用[J]. 食品与发酵工业, 2021, 47(3): 230-236.
[4] 张明娟, 王娟, 袁磊, 肖昭竞, 龙梅, 李根容. 多重聚合酶链式反应技术在食源性致病菌检测上的应用研究进展[J]. 食品与发酵工业, 2021, 47(2): 305-310.
[5] 孙颖颖, 董鹏程, 朱立贤, 张一敏, 罗欣, 毛衍伟. 食源性致病菌快速检测研究进展[J]. 食品与发酵工业, 2020, 46(17): 264-270.
[6] 曾慧君, 付诗慧, 晏涛, 杨小平, 刘萍, 徐玮, 董秋花, 郦娟. 核酸适配体生物传感器在食源性致病菌检测中的应用[J]. 食品与发酵工业, 2020, 46(17): 277-284.
[7] 刘勇, 严志鹏, 陈杭君, 邵平. 鲜切果蔬抗菌物质与抗菌包装应用研究进展[J]. 食品与发酵工业, 2019, 45(9): 289-294.
[8] 喻理, 马飞, 赵安顺, 白艺珍, 李董, 李培武. 基于碳纳米材料的黄曲霉毒素电化学检测方法研究现状[J]. 食品与发酵工业, 2019, 45(20): 281-290.
[9] 胡颖, 李洪军, 贺稚非. 噬菌体防控食源性致病菌的研究进展[J]. 食品与发酵工业, 2019, 45(1): 246-251.
[10] 王馨,胡文忠,陈晨,冯可,李鹤. 纳米材料在果蔬保鲜中的应用[J]. 食品与发酵工业, 2017, 43(1): 281-.
[11] 苏敏,马良,张宇昊,钟红,王佳曼. 磁纳材料表面可修饰性在食品污染物快速分析中的应用[J]. 食品与发酵工业, 2016, 42(8): 252-.
[12] 王馨,胡文忠,陈晨,冯可,杨柳. 纳米材料在食源性致病菌检测中的应用[J]. 食品与发酵工业, 2016, 42(6): 243-.
[13] 刘珂伟,傅茂润,刘涛,张晓慧,徐敏慧. 纳米材料对果蔬采后病菌致病力的调控及其机制研究进展[J]. 食品与发酵工业, 2015, 41(8): 261-.
[14] 云雯,黄先亮,黄锐,刘蓉,陈世奇. 纳米材料在农药残留检测的应用研究进展[J]. 食品与发酵工业, 2013, 39(11): 198-203.
[15] 索标,滕要辉,艾志录,王娜,谢新华,潘治利. 食源性致病菌多重实时荧光PCR检测扩增内标的构建及评价[J]. 食品与发酵工业, 2011, 37(08): 148-151.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn