Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 34-39    DOI: 10.13995/j.cnki.11-1802/ts.019994
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
海洋细菌低温葡萄糖氧化酶基因克隆及其在大肠杆菌中的表达
刘春莹1,2, 胡善松1,2, 张庆芳1,2, 李美玉1,2, 于爽1,2, 迟乃玉1,2*
1(大连大学 生命科学与技术学院,辽宁 大连,116622)
2(辽宁省海洋微生物工程技术研究中心,辽宁 大连,116622)
Cloning and expressing low temperature glucose oxidase gene from marinebacteria in Escherichia coli
LIU Chunying1,2, HU Shansong1,2, ZHANG Qingfang1,2, LI Meiyu1,2, YU Shuang1,2, CHI Naiyu1,2*
1(School of Life Science and Biotechnology, Dalian University, Dalian 116622,China)
2 (Liaoning Technology of Marine Microbiological Engineering Research Center, Dalian 116622, China)
下载:  HTML   PDF (1776KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决细菌葡萄糖氧化酶(glucose oxidase, GOD)活力较低的问题,提取和纯化了实验室保藏海洋细菌Citrobacters sp. 8-III的基因组DNA,并与现存GOD基因比对获得目的序列,以此序列为模板获得GOD基因。将人工合成并密码子优化的GOD基因亚克隆至载体pET28a(+),构建重组表达载体pET28a(+)-GOD并转化到E. coli BL21(DE3)中实现表达。经镍柱亲和层析得到较纯的重组GOD,并对其进行酶学性质研究。实验成功构建了产GOD的E. coli BL21(DE3)/pET-28a(+)-GOD,目的蛋白约46 kDa。重组GOD酶活为2.04 U/mL,该酶最适作用温度为25 ℃;最适作用pH为6.0;K+、Ni2+对GOD的活性有明显促进作用;重组GOD添加至饲料中可加快雏鸡生长,且具备一定防腐功效。该研究首次将海洋细菌GOD基因导入大肠杆菌中,开拓GOD外源表达新的宿主。同时重组GOD具备低温酶特性,为其在饲料添加剂和低温领域应用奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘春莹
胡善松
张庆芳
李美玉
于爽
迟乃玉
关键词:  低温GOD  大肠杆菌  纯化  酶学性质    
Abstract: The purpose of this study was to solve the problem that glucose oxidase (GOD) from marine bacteria has low activity. The genomic DNA of Citrobacters sp. 8-III was extracted and purified, and the target sequence was obtained by comparing against existing GOD genes. The synthetic and codon-optimized GOD gene was subcloned into the vector pET28a(+), and the recombinant expression vector pET28a(+)-GOD was constructed and transformed into Escherichia coli BL21(DE3) for expression. The recombinant GOD was purified by nickel affinity chromatography, and its enzymatic properties were studied. It was found that E. coli BL21(DE3)/pET-28a(+)-GOD producing GOD was successfully constructed. The purified GOD was 46 kDa. The activity of recombinant GOD was 2.04 U/mL, and its optimal reaction temperature and pH were 25 ℃ and 6.0, respectively. Additionally, K+ and Ni2+ significantly promoted its activity. Moreover, recombinant GOD could significantly accelerate the growth of chicken and it had good antiseptic effects in feeds of puppies. In conclusion, this study firstly introduced the marine bacterial GOD gene into E. coli to reveal a new host of GOD. Besides, recombinant GOD has cold-active enzyme properties, which lays a foundation for its applications in feed additives and cryogenics.
Key words:  cold-active glucose oxidase    Escherichia coli    purification    enzymatic properties
收稿日期:  2019-01-17                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
基金资助: 国家重点研发计划项目:新型海洋生物材料与海洋酶制剂产品研发与产业化(2018YFC0311100);辽宁省自然基金指导计划项目:海洋细菌低温葡萄糖氧化酶冷适应性机制研究(20180551160)
通讯作者:  刘春莹博士和胡善松硕士研究生并列为第一作者(迟乃玉教授为通讯作者,E-mail:cny7566@126.com)   
引用本文:    
刘春莹,胡善松,张庆芳,等. 海洋细菌低温葡萄糖氧化酶基因克隆及其在大肠杆菌中的表达[J]. 食品与发酵工业, 2019, 45(11): 34-39.
LIU Chunying,HU Shansong,ZHANG Qingfang,et al. Cloning and expressing low temperature glucose oxidase gene from marinebacteria in Escherichia coli[J]. Food and Fermentation Industries, 2019, 45(11): 34-39.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019994  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/34
[1] WOHLFAHRT G. The chemical mechanism of action of glucose oxidase from Aspergillus niger[J].Mol Cell Biochem,2004, 260(1-2):69-83.
[2] FERNANDES P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts[J].Enzyme Res, 2010,2010:862537.DOI:10.4061/2010/862537.
[3] COULTHARD C E, MICHAELS R, SHORT W F, et al. Notatin:an anti-bacterial glucose-aerodehydrogenase from Penicillium notatum Westling[J].Nature, 1942, 39(2):459-460.
[4] MÜLLER D.Oxidation von glukose mit extrakten aus Aspegillus niger[J].Biochemische Zeitschrift, 1928,199:136-170.
[5] WITTEVEEN F B. Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger[J].Curr Genet,1993,24(5):408-416.
[6] 刘志国,张志东,冯定远.日粮中添加过氧化氢酶对断奶仔猪生长性能、肠道形态及抗氧化性能的影响[J].中国饲料, 2017(1): 23-27.
[7] 王政,张大伟.抗生素替代技术在畜牧业中的应用[J].中国饲料,2017(24):30-34.
[8] 熊云霞.葡萄糖氧化酶在畜牧业中的应用及检测方法研究进展[J].饲料工业,2016,37(4):15-20.
[9] 张同燕.葡萄糖氧化酶在养殖业中的应用研究进展[J].当代畜牧,2018(1):16-17.
[10] FOULDS N C,LOWE C R.Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers[J].Analytical Chemistry,1988,60(22):2 473.
[11] KANG X,WANG J,WU H,et al.Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing[J].Biosensors & Bioelectronics,2009,25(4):901-905.
[12] 毕春元,杜祎,张金玲,等.生物传感器法检测葡萄汁中葡萄糖含量[J].中国酿造,2018,37(10):172-175.
[13] 马艳. 血糖仪和葡萄糖氧化酶法测定血糖的结果比较[J].世界最新医学信息文摘,2018,18(93):131.
[14] BLAZIC M,KOVACEVIC G,PRODANOVIC O,et al.Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases[J].Protein Expression & Purification,2013,89(2):175-180.
[15] GUO Y,LU F,ZHAO H,et al.Cloning and heterologous expression of glucose oxidase gene from Aspergillus niger Z-25 in Pichia pastoris[J].Applied Biochemistry & Biotechnology,2010,162(2):498.
[16] PULCI V, D’OVIDIO R, PETRUCCIOLI M, et al. The glucose oxidase of Penicillium variabile, P16: Gene cloning, sequencing and expression[J]. Letters in Applied Microbiology, 2010, 38(3): 233-238.
[17] 周亚凤,张先恩,刘虹,等.黑曲霉GOD基因的克隆及其在酵母中的高效表达[J].生物工程学报,2001,17(4):400-405.
[18] 高庆华,胡美荣,吴芳彤,等.点青霉葡萄糖氧化酶基因的克隆及其酶学性质研究[J].生物技术通报,2016,32(7):152-159.
[19] 王钢,陈尘,李强.大肠杆菌体系外源蛋白表达速度的调控策略[J].过程工程学报,2013,13(6):1 075-1 080.
[20] WITT S,SINGH M,KALISZ H M.Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense GOD expressed in Escherichia coli[J].Applied & Environmental Microbiology,1998,64(4):1 405.
[21] 顾磊,张娟,堵国成,等.黑曲霉葡萄糖氧化酶产生菌的筛选及其基因在大肠杆菌中的克隆表达[C].第八届中国酶工程学术研讨会论文集,2011,10:136.
[22] 肖志明,樊霞,马东霞,等.葡萄糖氧化酶的应用和检测方法研究进展[J].中国畜牧杂志,2014,50(18):76-81.
[23] 聂金梅,李阳源,刘金山.黑曲霉葡萄糖氧化酶基因改造及其在毕赤酵母中的表达[J].江苏农业科学,2018,46(20):17-21.
[24] 郝杰清,王帅坤,师慧,等.重组毕赤酵母葡萄糖氧化酶的纯化和性质[J].食品科学,2013,34(9):159-163.
[25] KIM B C,JEONG E,KIM E,et al.Bio-organic–inorganic hybrid photocatalyst,TiO2 and glucose oxidase composite for enhancing antibacterial performance in aqueous environments[J].Applied Catalysis B: Environmental,2018,11(3):205-211.
[26] FAKHRY B, ALI ASGHAR K, JAMSHID R. Expression, characterization and one step purification of heterologous glucose oxidase gene from Aspergillus niger ATCC 9029 in Pichia pastoris[J].EuPA Open Proteomics,2018, 9:1-5.
[27] 胡亚奇.葡萄糖氧化酶在鸡生产上的应用[J].中兽医学杂志, 2018(1):4.
[28] 王冰.葡萄糖氧化酶在猪饲料中的研究进展[J].饲料博览,2018(1):21-24.
[1] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[2] 蔡燕, 田丹, 严鑫, 李百裕, 李宇杰, 于丽娟, 吴锦明. 一步法快速从脱脂豆粉中三相分离脂肪氧合酶[J]. 食品与发酵工业, 2021, 47(9): 149-153.
[3] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[4] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[5] 彭燕鸿, 苏爱秋, 黄伟文, 蓝素桂, 杨天云, 谭强. 微生物嗜热脂肪酶研究进展[J]. 食品与发酵工业, 2021, 47(6): 289-294.
[6] 杨胜远, 林谦, 刘淑敏, 苏巧云, 黄慧玲. 屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究[J]. 食品与发酵工业, 2021, 47(5): 28-34.
[7] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[8] 宋婷, 王帅静, 汪沉, 吕育财, 罗华军, 郭金玲, 龚大春. 近平滑假丝酵母ATCC 7330羰基还原酶CpCR的表达及酶学性质研究[J]. 食品与发酵工业, 2021, 47(3): 18-24.
[9] 于洁, 徐勤茜, 李子院, 刘红艳, 郝再彬, 李海云. 虎杖内生真菌Aspergillus aculeatus HZ001产β-葡萄糖苷酶的酶学特性[J]. 食品与发酵工业, 2021, 47(3): 31-35.
[10] 包怡, 胡友明, 朱林江, 陆跃乐, 陈小龙. 己糖氧化酶的研究进展[J]. 食品与发酵工业, 2021, 47(3): 218-223.
[11] 胡冠华, 王德宝, 苏琳, 赵丽华, 田建军, 张忠海, 朱浩田, 靳烨. 食源性钙螯合肽的研究概况[J]. 食品与发酵工业, 2021, 47(3): 224-229.
[12] 武芸, 王春林, 王丽朋, 张腊腊, 胡浩斌. 黑果枸杞多酚吸附分离特性及抗氧化性研究[J]. 食品与发酵工业, 2021, 47(2): 70-77.
[13] 郭峰, 董明辉, 高梦园, 舒方, 孙冬冬, 汪维云. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究[J]. 食品与发酵工业, 2021, 47(2): 109-113.
[14] 张强, 李伟华. 抗氧化肽的研究现状[J]. 食品与发酵工业, 2021, 47(2): 298-304.
[15] 曾伟主, 单小玉, 房峻, 周景文. 微液滴适应性进化强化大肠杆菌耐受高浓度L-山梨糖[J]. 食品与发酵工业, 2021, 47(1): 1-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn