Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (11): 21-28    DOI: 10.13995/j.cnki.11-1802/ts.020067
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
耐久肠球菌C11菌株的环境胁迫耐受性及其低温适应相关基因的基因组学鉴定
姚文婷1,2, 陈兰明1,2*
1(上海海洋大学 食品学院,上海,201306)
2(农业部水产品贮藏保鲜质量安全风险评估实验室(上海),上海,201306)
Tolerance of Enterococcus durans C11 to environmental stresses andgenomic analysis of genes related to low-temperature adaptation
YAO Wenting1,2, CHEN Lanming1,2*
1(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306,China)   
2(Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage andPreservation, Ministry of Agriculture (Shanghai), Shanghai 201306,China)
下载:  HTML   PDF (1413KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 测定了耐久肠球菌C11菌株在不同环境胁迫条件下(温度、酸度、渗透压和人工胃肠液)的耐受性,并进行比较基因组学分析。结果显示,该菌株能够在15~25 ℃条件下生长,但是对酸(pH 2.0~4.0)、渗透压(质量分数为5.0%~15.0%的NaCl、质量分数为0.05%~0.3%的胆盐),以及人工胃肠液均无显著耐受性;耐久肠球菌C11基因组含有33个菌株特异性基因,其中有26个编码功能未知的假设蛋白,7个编码功能蛋白。此外,还鉴定到大量与细胞膜不饱和脂肪酸合成、相容性溶质吸收或合成、环境应激调控等相关基因,可能与其低温适应性相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚文婷
陈兰明
关键词:  耐久肠球菌C11  基因组  比较基因组学  低温适应性    
Abstract: This study was constructed to dissect the tolerance of Enterococcus durans C11 to environmental stresses and possible molecular mechanisms of its ability to adapt low-temperature environment. Tolerance of E. durans C11 was determined under different temperatures, acidities, osmolality, and artificial gastrointestinal fluids, and comparative genomic analysis was also carried out. The results showed that E. durans C11 was able to grow at 15-25 ℃, but had no significant tolerances to acid (pH 2.0-4.0), osmotic pressure induced by 5.0%-15.0% NaCl and 0.05%-0.3% bile salt, as well as to artificial gastric and intestinal fluids. It was also revealed that E. durans C11 had 33 strain-specific genes, which encoded for 26 hypothetical proteins and 7 functional proteins. Moreover, a number of genes involved in synthesizing cell membrane unsaturated fatty acids, uptaking or synthesizing compatible solutes, and regulating environmental stresses were identified from E. durans C11 genome, which may be related to the low-temperature adaptation of the bacterium. This study provides some data supports for future study on low-temperature adaptation of E. durans.
Key words:  Enterococcus durans C11    genome    comparative genomic    low-temperature adaptation
收稿日期:  2019-01-24                出版日期:  2019-06-15      发布日期:  2019-07-08      期的出版日期:  2019-06-15
基金资助: 上海市科委项目 (17050502200)
通讯作者:  硕士(陈兰明教授为通讯作者,E-mail:lmchen@shou.edu.cn)   
引用本文:    
姚文婷,陈兰明. 耐久肠球菌C11菌株的环境胁迫耐受性及其低温适应相关基因的基因组学鉴定[J]. 食品与发酵工业, 2019, 45(11): 21-28.
YAO Wenting,CHEN Lanming. Tolerance of Enterococcus durans C11 to environmental stresses andgenomic analysis of genes related to low-temperature adaptation[J]. Food and Fermentation Industries, 2019, 45(11): 21-28.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.020067  或          http://sf1970.cnif.cn/CN/Y2019/V45/I11/21
[1] GUEIMOND M,FRIAS R,OUWEHAND A C.Assuring the continued safety of lactic acid bacteria used as probiotics[J]. Biologia,2006,61(6):755-760.
[2] LADERO V,LINARES D M,DEL R B,et al.Draft genome sequence of the tyramine producer Enterococcus durans strain IPLA 655[J].Genome Announcements,2013,1(3):e00 265-13.
[3] AVRAMHANANEL,LIRAZ,JULIA,et al.E. durans strain M4-5 isolated from human colonic flora attenuates intestinal inflammation[J].Diseases of the Colon and Rectum,2010,53(12):1 676-1 686.
[4] RAMAKRISHNAN V,GOVEAS L,CONCEPTA,et al.Kinetic modeling, production and characterization of an acidic lipase produced by Enterococcus durans NCIM5427 from fish waste[J].Journal of Food Science and Technology,2015, 52(3):1 328-1 338.
[5] 黄坚,童京京,岳华,等.牦牛发酵酸奶中耐久肠球菌的筛选鉴定和益生特性[J].食品科学,2017,38(12):43-49.
[6] LIU Fei,LI Bailiang,DU Jincheng,et al.Complete genome sequence of Enterococcus durans KLDS6.0930,a strain with probiotic properties[J].Journal of Biotechnology,2016,217:49-50.
[7] 隋馨瑶,王莹,张卫兵,等.低温乳酸菌的研究与应用现状[J].食品与发酵科技,2017,53(4):83-87.
[8] LI Ping,GU Qiang.Complete genome sequence of Lactobacillus plantarum LZ95,a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin[J].Journal of Biotechnology,2016,229:1-2.
[9] LI Junfeng,YUAN Xianjun,DESTA S T,et al. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese[J].Bioresource Technology,2018,257:76.
[10] XU Shuang,LIU Taigang,RADJI C A,et al.Isolation, identification, and evaluation of new lactic acid bacteria strains with both cellular antioxidant and bile salt hydrolase activities in vitro[J].Journal of Food Protection,2016,79(11):1 919-1 928.
[11] ZHANG Bei,WANG Yanping,TAN Zhongfang,et al.Screening of probiotic activities of Lactobacilli strains isolated from traditional Tibetan Qula,a raw yak milk cheese[J].Asian-Australasian Journal of Animal Sciences,2016,29(10):1 490-1 499.
[12] BROWN J,PIRRUNG M,MCCUE L A.FQC Dashboard. integrates FastQC results into a web-based,interactive,and extensible FASTQ quality control tool[J].Bioinformatics,2017,33(19):3 137-3 139.
[13] DELCHER A L,BRATKE K A,POWERS E C,et al.Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics,2007,23(6):673-679.
[14] LOWE T M,EDDY S R.tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Res,1997,25(5):955-964.
[15] LAGESEN K,HALLIN P,RODLAND E A,et al.RNAmmer: consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Res,2007,35(9):3 100-3 108.
[16] GRISSA I,VERGNAUD G,POURCEL C.CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats[J].Nucleic Acids Research,2007,35:52-57.
[17] TATUSOVA T,DICUCCIO M,BADRETDIN A,et al.NCBI prokaryotic genome annotation pipeline[J].Nucleic Acids Research,2016,44(14):6 614-6 624.
[18] MARCHLER-BAUER A,DERBYSHIRE M K,GONZALES N R,et al.CDD:NCBI's conserved domain database[J].Nucleic Acids Research,2015,43:D222-226.
[19] PETERSEN T N,BRUNAK S,V HEIJNE G,et al.SignalP 4.0:discriminating signal peptides from transmembrane regions[J]. Nature Methods,2011,8(10):785-786.
[20] KROGH A,LARSSON B,VON H G,et al.Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J].Journal of Molecular Biology,2001,305(3):567-580.
[21] FU Limin,NIU Beifang,ZHU Zhengwei,et al.CD-HIT:accelerated for clustering the next-generation sequencing data[J]. Bioinformatics,2012,28(23):3 150-3 152.
[22] EDGAR R C.MUSCLE:multiple sequence alignment with high accuracy and high throughput[J].Nucleic Acids Research, 2004,32(5):1 792-1 797.
[23] GUINDON S,GASCUEL O.A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood[J]. Systematic Biology,2003,52(5):696.
[24] ZHANG Huangkai,GAO Shenghan,LERCHER M J,et al.EvolView,an online tool for visualizing, annotating and managing phylogenetic trees[J].Nucleic Acids Research,2012,40:569-572.
[25] LI Bailiang,EVIVIE S E,JIN D,et al.Complete genome sequence of Enterococcus durans KLDS6.0933, a potential probiotic strain with high cholesterol removal ability[J].Gut Pathogens,2018,10(1):32.
[26] WAN K H,YU C,PARK S,et al.Complete genome sequence of Enterococcus durans Oregon-R-modENCODE strain BDGP3,a lactic acid bacterium found in the Drosophila melanogaster gut[J].Genome Announcements,2017,5(40):e01 041-01 017.
[27] 祝进,白永凤,陆军,等.粪肠球菌毒力基因及耐药性分析[J].放射免疫学杂志,2012,25(3):276-279.
[28] 辛玉华,周宇光,东秀珠.低温细菌与古菌的生物多样性及其冷适应机制[J].生物多样性,2013,21(4):468-480.
[29] 余永红,马建荣,王海洪.细菌脂肪酸合成多样性的研究进展[J].微生物学杂志,2016,36(4):76-83.
[30] CASANUEVA A,TUFFIN M,CARY C,et al.Molecular adaptations to psychrophily:the impact of 'omic' technologies[J]. Trends In Microbiology,2010,18(8):374-381.
[31] WELSH D T.Ecological significance of compatible solute accumulation by micro-organisms:from single cells to global climate[J].FEMS Microbiology Reviews,2000,24(3):263-290.
[32] TAMARA H,ERHARD B.Protection of Bacillus subtilis against cold stress via compatible-solute acquisition[J].Journal of Bacteriology,2011,193(7):1 552-1 562.
[33] KREIL D P,OUZOUNIS C A.Identification of thermophilic species by the amino acid compositions deduced from their genomes[J].Nucleic Acids Research,2001,29(7):1 608-1 615.
[34] KASANA R C,GULATI A.Cellulases from psychrophilic microorganisms:a review[J].Journal of basic Microbiology,2011, 51(6):572-579.
[35] PHADTARE S.Recent developments in bacterial cold-shock response[J].Current Issues in Molecular Biology,2004, 6(2):125-136.
[36] CHATTOPADHYAY M K.Mechanism of bacterial adaptation to low temperature[J].Journal of Biosciences (Bangalore),2006, 31(1):157-165.
[37] 刘芳明.3株南极海洋石油烃低温降解菌(Shewanella sp.NJ49、Pseudoalteromonas sp.NJ289和Planococus sp.NJ41)基因组学及比较研究[D].青岛:中国科学院研究生院(海洋研究所),2016.
[38] KUHN E.Toward understanding life under subzero conditions:the significance of exploring psychrophilic "cold-shock" proteins[J].Astrobiology,2012,12(11):1 078-1 086.
[39] ZHU Chunhua,SUN Boyi,LIU Taigang,et al.Genomic and transcriptomic analyses reveal distinct biological functions for cold shock proteins (VpaCspA and VpaCspD) in Vibrio parahaemolyticus CHN25 during low-temperature survival[J].BMC Genomics,2017,18(1):436.
[40] BAKERMANS C,TOLLAKSEN S L,GIOMETTI C S,et al. Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures[J].Extremophiles:Life under Extreme Conditions,2007,11(2):343-354.
[1] 余晶晶, 黄永光. 基因组学及其在白酒酿造基础研究领域中的应用[J]. 食品与发酵工业, 2021, 47(7): 278-284.
[2] 彭明芳, 李培骏, 单杨, 陈玉秋, 杨岱峻, 雷丽嫦, 黄芝辉, 余孔新. 比较基因组揭示广西酸菜乳杆菌碳水化合物活性酶谱[J]. 食品与发酵工业, 2021, 47(4): 68-73.
[3] 蔡程山, 王雨, 白飞荣, 翟磊, 张天赐, 胡海蓉, 姚粟. 黑曲霉Aspergillus niger全基因组DNA提取方法的改良与比较[J]. 食品与发酵工业, 2020, 46(6): 13-18.
[4] 邬佳颖, 毛丙永, 谷佳玉, 崔树茂, 张秋香. 利用水苏糖的肠道细菌的分离鉴定及其利用特性研究[J]. 食品与发酵工业, 2020, 46(24): 16-23.
[5] 韩小敏, 李凤琴. 黑曲霉群菌种多相分类和鉴定方法最新研究进展[J]. 食品与发酵工业, 2020, 46(23): 279-285.
[6] 卢萌萌, 任聪, 聂尧, 徐岩. 白酒酿造窖泥未培养微生物菌群的可培养化策略[J]. 食品与发酵工业, 2020, 46(19): 9-16.
[7] 易至, 丁洁琼, 王鸿超, 陆文伟, 赵建新, 陈卫, 张灏. 基于比较基因组学的丁酸梭菌遗传多样性及生物学特性[J]. 食品与发酵工业, 2020, 46(10): 1-7.
[8] 尹花, 贺扬, 侯晓平, 陈璐, 董建军. Lager啤酒酵母起源的历史足迹及基因组学研究[J]. 食品与发酵工业, 2019, 45(9): 274-281.
[9] 胡向东, 冯云会, 叶茂, 梁新乐. 随机诱变和基因组重排选育阿维拉霉素高产菌[J]. 食品与发酵工业, 2019, 45(7): 1-7.
[10] 岳莹雪,李柏良,宋月,闫芬芬,王玉琦,霍贵成. 瑞士乳杆菌特性及应用研究进展[J]. 食品与发酵工业, 2019, 45(5): 253-258.
[11] 唐小曼, 唐垚, 张其圣, 汪冬冬, 陈功, 李恒, 明建英, 余文华, 刘清斌. 四川工业泡豇豆主要生物胺的形成及降解分析[J]. 食品与发酵工业, 2019, 45(21): 86-92.
[12] 王婷, 马洪坤, 赵桂红, 蔡柠匀, 张德志, 陈宁. 谷氨酸棒状杆菌CRISPR-Cpf1/ssDNA基因组编辑系统优化[J]. 食品与发酵工业, 2019, 45(19): 1-7.
[13] 李晓姝, 殷瑞敏, 毛丙永, 崔树茂, 赵建新. 副干酪乳杆菌的基因多样性及其抗生素耐受性分析[J]. 食品与发酵工业, 2019, 45(14): 1-8.
[14] 于学健, 冯慧军, 翟磊, 白秀彬, 许玲, 于盼盼, 程池, 姚粟. 芝麻香型白酒高温大曲中高温放线菌及其功能基因的动态变化规律[J]. 食品与发酵工业, 2019, 45(13): 71-77.
[15] 朱广素, 王刚, 王园园, 马方励, 赵建新, 张灏, 陈卫. 三株植物乳杆菌对代谢综合征大鼠肠道菌群的影响[J]. 食品与发酵工业, 2018, 44(9): 53-60.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn