Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (22): 76-82    DOI: 10.13995/j.cnki.11-1802/ts.020221
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
水解制备细菌纤维素纳米纤维及纳米纤维稳定的Pickering乳液特性
刘子菲, 路苹, 高子乔, 贾梅杰, 翟希川, 林德慧*, 杨兴斌
(陕西师范大学,陕西省食品绿色加工与安全控制工程实验室,陕西 西安,710119)
Hydrolysis preparation of bacterial cellulose nanofibersand its characteristics of the Pickering emulsions
LIU Zifei, LU Ping, GAO Ziqiao, JIA Meijie, ZHAI Xichuan, LIN Dehui*, YANG Xingbin
(State Laboratory of Shaanxi Food Green Processing and Safety Control Engineering, Shaanxi Normal University, Xi'an 710119, China)
下载:  HTML   PDF (7831KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对盐酸水解细菌纤维素制备纳米纤维过程中如何确定最佳水解条件的问题,应用响应面分析法,优化了影响纳米纤维粒径的关键工艺,分析了影响因素之间的交互作用,建立了水解过程的实验数学模型,得出最佳的水解条件。分析表明,盐酸浓度、温度、料液比对纳米纤维的粒径影响显著,通过优化得出最佳水解条件为:盐酸浓度2.87 mol/L,温度61.72 ℃,时间3.50 h,料液比1∶7.51 (g∶mL)。实验得到的纳米纤维粒径(520 nm)与模型的预测值(508 nm)吻合较好。进一步通过纳米纤维制备Pickering乳液,常温放置4周和给定温度变化下,乳液粒径均无显著变化。整个实验表明,最佳水解条件下制备的纳米纤维素稳定的Pickering乳液具备良好的稳定特性,在食品工业中具有较大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子菲
路苹
高子乔
贾梅杰
翟希川
林德慧
杨兴斌
关键词:  细菌纤维素  纳米纤维  响应面分析法  Pickering乳液  稳定性    
Abstract: In this study, the conditions relating to particle size of nanofibers from hydrochloric acid hydrolyzing bacterial cellulose was optimized through response surface methodology. The experimental mathematical model of the hydrolysis process was established and interaction between significant parameters was analyzed. The results indicated the concentration of hydrochloric acid, the hydrolysis temperature and the ratio of solid to liquid had significant effects on the particle size of nanofibers. The optimum hydrolysis conditions as following: the concentration of hydrochloric acid was 2.87 mol/L, the temperature was 61.72 ℃, the time was 3.50 h, and the ratio of solid to liquid was 1∶7.51 (g∶mL). The particle size (520 nm) of the nanofibers obtained was congruous to the predicted result of the model (508 nm). Furthermore, the obtained nanofibers were used to prepare the Pickering emulsions, and the particle sizes of the prepared emulsions did not change significantly after 4 weeks of storage at selected temperatures in the study. In conclusion, the Pickering emulsion prepared in the present work exhibited remarkable stability and great application potential in the food industry.
Key words:  bacterial cellulose    nano-fibers    response surface analysis    Pickering emulsions    stability
收稿日期:  2019-02-17                     发布日期:  2020-02-16      期的出版日期:  2019-11-25
基金资助: 国家自然科学基金青年项目(C31701662)
作者简介:  本科生(林德慧副教授为通讯作者,E-mail;lindehui504@snnu.edu.cn)。
引用本文:    
刘子菲,路苹,高子乔,等. 水解制备细菌纤维素纳米纤维及纳米纤维稳定的Pickering乳液特性[J]. 食品与发酵工业, 2019, 45(22): 76-82.
LIU Zifei,LU Ping,GAO Ziqiao,et al. Hydrolysis preparation of bacterial cellulose nanofibersand its characteristics of the Pickering emulsions[J]. Food and Fermentation Industries, 2019, 45(22): 76-82.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.020221  或          http://sf1970.cnif.cn/CN/Y2019/V45/I22/76
[1] 张卫佳,刘盈.细菌纤维素在创面修复中的研究与应用特性[J].中国组织工程研究,2018,22(34):159-164.
[2] HUANG Y, ZHU C, YANG J, et al. Recent advances in bacterial cellulose [J]. Cellulose, 2014, 1(21): 1-30.
[3] CAMPANO C, BALEA A, BLANCO A, et al. Enhancement of the fermentation process and properties of bacterial cellulose: A review [J]. Cellulose, 2016, 1(23): 57-91.
[4] FORESTI M L, VÁZQUEZ A, BOURY B. Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances[J].Carbohydrate Polymers,2017,157:447-467.
[5] SU F H, TABAÑAG I D F,WU C Y,et al. Decorating outer membrane vesicles with organophosphorus hydrolase and cellulose binding domain for organophosphate pesticide degradation[J]. Chemical Engineering Journal,2017,308:1-7.
[6] BALDIKOVA E, POSPISKOVA K, LADAKIS D, et al. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells [J]. Materials Science & Engineering C, 2017, 71: 214-221.
[7] QIU K, NETRAVALI A N. A review of fabrication and applications of bacterial cellulose based nanocomposites[J]. Polymer Reviews, 2014, 54(4): 598-626.
[8] QIU Y, QIU L, CUI J, et al. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing [J]. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 303-309.
[9] SHI Z, ZHANG Y, PHILLIPS G O, et al. Utilization of bacterial cellulose in food [J]. Food Hydrocolloids, 2014, 35, 539-545.
[10] BERTON-CARABIN C, SCHROEN K. Pickering emulsions for food applications: Background, trends and challenges[J]. Annual Review of Food Science and Technology, 2015, 6: 263-297.
[11] FRENCH D J, TAYLOR P, FOWLER J, et al. Making and breaking bridges in a Pickering emulsion [J]. Journal of Colloid and Interface Science, 2014, 441: 30-38.
[12] DICKINSON E.Microgels- An alternative colloidal ingredient for stabilization of food [J]. Trends in Food Science & Technology, 2015, 43(2): 178-188.
[13] TASSET S, CATHALA B, BIZOT H, et al. Versatile cellular foams derived from CNC stabilized Pickering emulsions [J]. RSC Advances, 2014, 4: 893-905.
[14] DICKINSON E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions [J]. Trends in Food Science and Technology, 2012, 24(1), 4-12.
[15] RAYNER M, MARKU D, ERIKSSON M, et al. Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications [J].Colloids and Surfaces A, 2014, 458:48-62.
[16] 杨飞,王君,蓝强,等.Pickering乳状液的研究进展[J].化学进展,2009,21(Z2):1 418-1 426.
[17] 吴媛莉,李云兴,杨成.疏水改性籽粒苋淀粉颗粒稳定的Pickering乳液[J].精细化工,2015,32(7):772-777;836.
[18] 李海明,杨盛,韦何雯,等.食品级Pickering乳液的研究进展[J].食品科学,2015,36(19):265-270.
[19] 王玲燕,李元.微生物胞外多糖生物合成研究进展[J].药物生物技术,2002,9(6):369-373.
[20] 徐龙. 微生物多糖的增粘特性与对非均相体系的作用机制[D].东营:中国石油大学(华东),2016.
[21] 宋绍富,崔吉,罗一菁,等.微生物多糖研究进展[J].油田化学,2004,21(1):91-96.
[22] 杨昆,詹晓北,陈蕴,等.响应面法优化产琥珀酸发酵培养基[J].安徽农业科学,2008,36(16): 6 611-6 614.
[23] 张基亮,何欣,李元敬,等.细菌纤维素减肥功能测定及其酸奶的制作[J].食品科学,2013,34(12): 61-66.
[24] 余先纯,李湘苏,易雪静,等.固体酸水解玉米秸秆制备糠醛的研究[J].林产化学与工业,2010,31(3): 71-74.
[25] LIN D H, LI R, LOPEZ-SANCHES P, et al. Physical properties of bacterial cellulose aqueous suspensions treated by high pressure homogenizer[J]. Food Hydrocolloids, 2015, 44:435-442.
[26] WU R Q, LI Z X, YANG J P, et al. Mutagenesis induced by high hydrostatic pressure treatment: A useful method to improve the bacterial cellulose yield of a Gluconacetobacter xylinus strain[J]. Cellulose, 2010,17(2):399-405.
[27] MARTINEZ-SANZ M, LOPEZ-RUBIO A, LAGARON J M. Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via meltcompounding to significantly enhance barrier and mechanical properties[J].Biomacromolecules, 2012, 13(11): 3 887-3 899.
[28] KALASHNIKOVA I, BIZOT H, CATHALA B, et al. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface[J]. Biomacromolecules, 2012, 13(1):267-275.
[29] YAN H Q, CHEN X Q, SONG H W.Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion[J].Food Hydrocolloids,2017,72:127-135.
[30] 刘宝亮,曹桂萍.响应面分析法优化离子液体双水相提取香樟叶中总黄酮的工艺条件[J].现代食品科技,2018,34(4):179-187.
[31] GOMEZ H, SERPA A, VELASQUEZ-COCK J,et al.Vegetable nanocellulose in food science: A review[J]. Food Hydrocolloids, 2016,57:178-186.
[32] ZHAI X C, LIN D H, LIU D J,et al.B. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions[J].Food Research International, 2018,103:13-20.
[1] 阮雁春, 彭旭东, 杨丹. 花生蛋白水解物对色拉酱贮藏稳定性的影响[J]. 食品与发酵工业, 2021, 47(8): 96-100.
[2] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[3] 余瞻, 赵福权, 徐成龙, 王珍珍, 张泽鑫, 沙如意, 毛建卫. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98.
[4] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[5] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[6] 王伟佳, 高晓夏月, 刘爱国, 刘立增, 王鹏程, 杨毅. 不同热处理无乳糖酸奶与普通酸奶品质的比较[J]. 食品与发酵工业, 2021, 47(5): 99-104.
[7] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[8] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[9] 马亚琴, 贾蒙, 张晨. 高压均质技术在果汁加工中的应用[J]. 食品与发酵工业, 2021, 47(3): 265-273.
[10] 彭松林, 潘成磊, 康梦瑶, 李懿璇, 赵紫悦, 郑仁兵, 尚永彪. 卤烤鸭中类黑精的提取及其抗氧化活性与化学稳定性研究[J]. 食品与发酵工业, 2021, 47(2): 22-29.
[11] 孙烨, 李英浩, WULANDARI, 吕丽爽, 张秋婷. 超声波预处理对玉米醇溶蛋白结构及其Pickering乳液稳定性的影响[J]. 食品与发酵工业, 2021, 47(1): 97-106.
[12] 陈聪, 胡长利, 谢晶. 浓缩与冻结方式对牛乳品质的影响[J]. 食品与发酵工业, 2021, 47(1): 214-221.
[13] 祁立波, 吴超, 钟利敏, 尚珊, 董秀萍, 林松毅. 婴幼儿营养包组成及质量控制现状分析[J]. 食品与发酵工业, 2021, 47(1): 293-302.
[14] 常馨月, 罗惟, 陈程莉, 董全. 奇亚籽油微胶囊贮藏稳定性及缓释动力学[J]. 食品与发酵工业, 2020, 46(9): 108-114.
[15] 厉妍青, 范柳萍. 槐米浊汁饮料稳定性研究[J]. 食品与发酵工业, 2020, 46(8): 199-204.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn