Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (23): 29-36    DOI: 10.13995/j.cnki.11-1802/ts.021284
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
益生菌复配富铬酵母缓解2型糖尿病的作用机制涉及调节肠道菌群失调
周兴婷, 于雷雷*, 翟齐啸, 田丰伟, 赵建新, 张灏, 陈卫
(江南大学 食品学院,江苏 无锡,214122)
Antidiabetic effects of probiotics compounded with chromium-rich yeast alleviate type 2 diabetes symptoms via regulating gut microbiota imbalance
ZHOU Xingting, YU Leilei*, ZHAI Qixiao, TIAN Fengwei, ZHAO Jianxin, ZHANG Hao, CHEN Wei
(School of Food Science and Technology, Jiangnan University, Wuxi 214122,China)
下载:  HTML   PDF (8147KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究通过高脂饲料和腹腔注射链脲佐菌素STZ诱导2型糖尿病小鼠模型,实验小鼠随机分为5组:空白组、模型组、药物组、乳酸菌组、复合组。实验结果发现肠道菌群失调与2型糖尿病的发生发展存在着密不可分的关联。模型组小鼠短链脂肪酸含量和物种丰富度显著下降,部分有益菌丰度降低,而致病菌丰度显著提升。此外,药物组、乳酸菌组和复合组均在一定程度上改善了糖尿病小鼠的肠道菌群结构和功能。其中与乳酸菌组相比,复合组的保护效果更显著,更显著增加Lactobacillus的丰度,降低CoprococcusRikenellaceae-g_的丰度,同时短链脂肪酸含量被显著增加。综上,复合组对2型糖尿病小鼠肠道菌群失调具有最显著的改善作用。本研究将为益生菌复配剂应用于2型糖尿病的干预治疗提供重要参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周兴婷
于雷雷
翟齐啸
田丰伟
赵建新
张灏
陈卫
关键词:  益生菌  富铬酵母  2型糖尿病  肠道菌群  菌群失调    
Abstract: This study explored the mechanism of probiotics with chromium-rich yeast on Type 2 diabetes in mice. The disease was induced by high-fat diet and intraperitoneal injection of STZ. The fifty mice were divided into five groups. The results showed that Type 2 diabetes is closely related to the imbalance of gut microbiota. The level of the short-chain fatty acids (SCFAs) and the diversity of intestinal microbiota in these mice were significantly reduced, the abundance of some beneficial bacteria was decreased and the abundance of pathogenic bacteria was increased. After intervention, the gut microbiota imbalance was alleviated in drug-treated group, probiotics-treated group and cocktail-treated (using mixture of probiotics and chromium-rich yeast) group. Compared with the probiotics-treated group, the cocktail group showed more significant protective effects, including increase in the abundance of Lactobacillus and SCFA levels, and decrease in glucose level and abundance of Coprococcus and Rikenellaceae-g. Therefore, mixture of probiotics and chromium-rich yeast had more effective and comprehensive protective effects on type 2 diabetes. This study provided a theoretical basis for microbial mixture treatment method as an intervention treatment for Type 2 diabetes.
Key words:  Probiotic    Chromium-rich yeast    Type 2 diabetes    Gut microbiota    Microbiota imbalance
收稿日期:  2019-06-05                出版日期:  2019-12-15      发布日期:  2020-02-11      期的出版日期:  2019-12-15
基金资助: 国家自然科学基金项目(31772090和31820103010);江苏省自然科学青年基金(BK20180603);中国博士后基金(2018M642166);江苏省博士后基金(2018K016A);江南大学自主研究项目(JUSRP11847);国家食品科学技术一级学科双一流计划(JUFSTR20180102);江苏省“食品安全与质量控制协调创新中心”项目
作者简介:  硕士研究生(于雷雷讲师为通讯作者,E-mail:leileiyu@jiangnan.edu.cn)。
引用本文:    
周兴婷,于雷雷,翟齐啸,等. 益生菌复配富铬酵母缓解2型糖尿病的作用机制涉及调节肠道菌群失调[J]. 食品与发酵工业, 2019, 45(23): 29-36.
ZHOU Xingting,YU Leilei,ZHAI Qixiao,et al. Antidiabetic effects of probiotics compounded with chromium-rich yeast alleviate type 2 diabetes symptoms via regulating gut microbiota imbalance[J]. Food and Fermentation Industries, 2019, 45(23): 29-36.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021284  或          http://sf1970.cnif.cn/CN/Y2019/V45/I23/29
[1] HANSEN C H, METZDORFF S B, HANSEN A K. Customizing laboratory mice by modifying gut microbiota and host immunity in an early "window of opportunity"[J]. Gut Microbes, 2013, 4(3): 241-245.
[2] RAJOKAM S R, SHI J, MEHWISH H M, et al. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health[J]. Food Science & Human Wellness, 2017, 6(3): 121-130.
[3] GILBERTE R F, Z.LIU, D. Development of a nongenetic mouse model of type 2 diabetes[J]. Experimental Diabetes Research, 2014, 2011(1): 1-12.
[4] GUARIGUATA L, WHITING D R, HAMBLETON, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035[J]. Diabetes Research & Clinical Practice, 2014, 103(2): 137-149.
[5] YUAN X, NI H X, CHEN X L, et al. Identification of therapeutic effect of glucagon-like peptide 1 in the treatment of STZ-induced diabetes mellitus in rats by restoring the balance of intestinal flora[J]. J Cell Biochem, 2018, 119(12): 10 067-10 074.
[6] AYDIN O N, MAX N, VICTOR G. The gut microbiome as a target for the treatment of type 2 diabetes[J]. Curr Diab Rep, 2018, 18(8): 55.
[7] MARAZZA J A L, JEAN G, GRACIELA S D G, et al. Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice[J]. Journal of Functional Foods, 2013, 5(4): 1 848-1 853.
[8] WANG G, LI X, ZHAO J, et al. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism[J]. Food & Function, 2017, 8.
[9] KIELER I N, OSTO M, HUGENTOBLER L, et al. Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria[J]. Scientific reports, 2019, 9(1): 4 822.
[10] HAN L, LI T, DU M, et al. Beneficial effects of potentilla discolor bunge water extract on inflammatory cytokines release and gut microbiota in high-fat diet and streptozotocin-induced type 2 diabetic mice[J]. Nutrients, 2019, 11(3): 670.
[11] CAO Y, YAO G, SHENG Y, et al. Jin qi Jiang tang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice[J]. Journal of Diabetes Research, 2019, 2019(2): 1-12.
[12] WANG G L, ZHAO X, ZHANG J, et al. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism[J]. Food & Function, 2017, 8(9):3 155-3 164.
[13] CANI P D, NEYRINCK A M, FAVA F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J]. Diabetologia, 2007, 50(11): 2 374-2 383.
[14] YADAV H, JAIN S, SINHA P R. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats[J]. Nutrition, 2007, 23(1): 62-68.
[15] NTAIKOU I G, KORNAROS H N, LYBERATOS M. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1 153-1 163.
[16] DAO M C E, ARON-WISNEWSKY A, SOKOLOVSKA J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology[J]. Gut, 2016, 65(3): 426-436.
[17] SHIN N R, LEE J C, LEE H Y, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut, 2014, 63(5): 727-735.
[18] JK G, JL W, AC P, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4): 789-799.
[19] FLINT H J, DUNCAN SYLVIA H, SCOT T, et al. Links between diet, gut microbiota composition and gut metabolism[J]. Proc Nutr Soc, 2015, 74(1): 13-22.
[20] STAUDACHER H M, LOMER FARQUHARSON, F M LOUIS, et al. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: A Randomized Controlled Trial[J]. Gastroenterology, 2017, 153(4): 1 547.
[21] STILSKSRUD B, NOWAK P, NWOSU F C, et al. Reduced levels of d-dimer and changes in gut microbiota composition after probiotic intervention in HIV-infected individuals on stable art[J]. J Acquir Immune Defic Syndr, 2015, 70(4): 329-337.
[22] GAO Z Y, ZHANG J, WARD J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1 509-1 517.
[23] ZHU K X N,TAN S P, LI L, et al. A polysaccharide from Ganoderma atrum improves liver function in type 2 diabetic rats via antioxidant action and short-chain fatty acids excretion[J]. Journal of Agricultural & Food Chemistry, 2016, 64(9): 1 938.
[24] HUANG J Y. Acetate metabolism and aging: An emerging connection[J]. Mechanisms of Ageing & Development, 2010, 131(7): 511-516.
[25] WOLEVER T M, JOSSE R G, et al. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans[J]. Metabolism Clinical & Experimental, 1997, 46(7): 805-811.
[26] WEN L W F S. Dietary short-chain fatty acids protect against type 1 diabetes[J]. Nature Immunology, 2017, 18(5): 484-486.
[27] LIU B Q, WANG J, WANG Q, et al. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion[J]. Plos One, 2014, 9(8): 1-8.
[28] VAN Z G C, KNUDSEN A, ROYTIO H, et al. The effect of selected synbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon[J]. PloS one, 2012, 7(10): 1-10.
[29] WEI Y, GONG J, ZHU W, et al. Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant Staphylococcus aureus enterocolitis[J]. Bmc Infectious Diseases, 2015, 15(1): 265.
[30] ZHANG Z, XU H, ZHAO H, et al. Edgeworthia gardneri (Wall.) Meisn. water extract improves diabetes and modulates gut microbiota[J]. Journal of Ethnopharmacology, 2019, 239: 111 854.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[3] 姜甜, 陆文伟, 崔树茂, 张灏, 赵建新. 静电喷雾干燥微囊化乳双歧杆菌BL03[J]. 食品与发酵工业, 2021, 47(7): 27-33.
[4] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[5] 王楠, 田晗, 张文晓, 白筱翠, 肖纯凌. 两株具有潜在益生作用的人源链球菌的安全性评价[J]. 食品与发酵工业, 2021, 47(5): 12-16.
[6] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[7] 李霞, 陈海鸥, 韩淑芳, 陆凤莹, 周玉恒, 单杨, 李静. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业, 2021, 47(2): 45-50.
[8] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[9] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[10] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[11] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[12] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[13] 王瑛, 林钰清, 李爱军, 林启豪, 薛雪, 王洪飞, 陈琬颖. 重金属危害机制及益生菌清除重金属机制研究进展[J]. 食品与发酵工业, 2020, 46(3): 281-292.
[14] 迟珺曦, 雷文平, 刘孝芳, 刘成国. 干酪乳杆菌LC-7在牛乳中的生长及发酵特性[J]. 食品与发酵工业, 2020, 46(22): 208-213.
[15] 阿热爱·巴合提, 武瑞赟, 肖梦圆, 李平兰, 谭春明. 益生菌的生理功能及作用机理研究进展[J]. 食品与发酵工业, 2020, 46(22): 270-275.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn