Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (22): 12-19    DOI: 10.13995/j.cnki.11-1802/ts.021683
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
两歧双歧杆菌缓解Ⅱ型糖尿病的效果差异及机制分析
司倩, 焦婷, 杨树荣, 孙珊珊, 王刚*, 赵建新, 张灏, 陈卫
(江南大学 食品学院,江苏 无锡,214122)
Effects and mechanisms of Bifidobacterium bifidum in alleviating type II diabetes
SI Qian, JIAO Ting, YANG Shurong, SUN Shanshan, WANG Gang*, ZHAO Jianxin, ZHANG Hao, CHEN Wei
(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (3999KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文分析3株两歧双歧杆菌对高脂饮食结合链脲佐菌素诱导的Ⅱ型糖尿病小鼠症状的缓解作用及可能机制。将48只雄性C57BL/6J小鼠分为6组,菌处理组每周灌菌6次,灌胃15 周。实验期间,测定小鼠的血糖指标和血脂四项,测定肝脏细胞因子和丙二醛含量,分析组织病理学损伤,测定小鼠粪便短链脂肪酸含量并分析小鼠的肠道菌群。3株菌在改善血糖血脂代谢和炎症等方面表现出明显差异。结果表明,与两歧双歧杆菌BB13和H35相比,BB1对Ⅱ型糖尿病小鼠的血糖血脂代谢异常、炎症反应均有明显改善,其可能机制是BB1缓解高脂饮食和STZ导致的肠道菌群失调,增加了肠道中Bacteroidales S24-7的丰度,从而使肠道内SCFAs含量升高,缓解了小鼠体内的低水平炎症,改善胰岛素抵抗,缓解了Ⅱ型糖尿病。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
司倩
焦婷
杨树荣
孙珊珊
王刚
赵建新
张灏
陈卫
关键词:  两歧双歧杆菌  Ⅱ型糖尿病  炎症  肠道菌群  短链脂肪酸    
Abstract: The antidiabetic effects and possible mechanism of three Bifidobacterium bifidum strains on type 2 diabetes (T2D) mice induced by high fat diet and streptozotocin were investigated. 48 male C57BL/6J mice were divided into 6 groups. Mice in bacteria treated group were gavaged 6 times a week for fifteen weeks. During the experiment, the blood glucose and blood lipid of the mice, the contents of the liver cytokines and malondialdehyde, the pathological damage of the tissues and the short-chain fatty acids in the excrement of the mice was measured as well as the intestinal flora in the mice were analyzed. Three strains showed significantly different effects on improving blood glucose, blood lipid metabolism and inflammation. Compared with BB13 and H35, BB1 significantly improved blood glucose tolerance, dyslipidemia and immune function in T2D mice induced by high fat diet and streptozotocin. The possible mechanism is that BB1 alleviated gut microbiota dysbiosis induced by high-fat diet and streptozotocin and increased the abundance of Bacteroidales S24-7, hence increased the content of SCFAs, which further reduced the inflammation and alleviated insulin resistance and T2D.
Key words:  Bifidobacterium bifidum    T2D    inflammation    intestinal flora    short chain fatty acids
收稿日期:  2019-07-15                     发布日期:  2020-02-16      期的出版日期:  2019-11-25
基金资助: 国家自然科学基金—面上项目(31671839)
作者简介:  硕士(王刚副教授为通讯作者,E-mail: wanggang@jiangnan.edu.cn)。
引用本文:    
司倩,焦婷,杨树荣,等. 两歧双歧杆菌缓解Ⅱ型糖尿病的效果差异及机制分析[J]. 食品与发酵工业, 2019, 45(22): 12-19.
SI Qian,JIAO Ting,YANG Shurong,et al. Effects and mechanisms of Bifidobacterium bifidum in alleviating type II diabetes[J]. Food and Fermentation Industries, 2019, 45(22): 12-19.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021683  或          http://sf1970.cnif.cn/CN/Y2019/V45/I22/12
[1] BACANLI M, DILSIZ S A, BASARAN N, et al. Effects of phytochemicals against diabetes [J]. Advances in Food and Nutrion Research,2019,89:209.
[2] MUROTOMI K, UMENO A, YASUNAGA M, et al. Oleuropein-rich diet attenuates hyperglycemia and impaired glucose tolerance in type 2 diabetes model mouse[J]. Journal of Agricultural and Food Chemistry, 2015, 63(30):6 715-6 722.
[3] CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Research and Clinical Practice, 2018, 138:271-281.
[4] NELL S, SUERBAUM S, JOSENHANS C. The impact of the microbiota on the pathogenesis of IBD: iessons from mouse infection models[J]. Nature Reviews Microbiology, 2010, 8(8):564-577.
[5] XU P, HONG F, WANG J, et al. Microbiome remodeling via the montmorillonite adsorption-excretion axis prevents obesity-related metabolic disorders[J]. EBioMedicine, 2017, 16:251-261.
[6] AHMADI S, NAGPAL R, WANG S, et al. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation [J]. The Journal of Nutritional Biochemistry, 2019, 67:1-13.
[7] 许应强,董艳. 双歧杆菌的临床作用和应用[J]. 中国现代药物应用, 2007, 1(7):61-62.
[8] SOLEIMANI A, MOJARRAD M Z, BAHMANI F, et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects[J]. Kidney International, 2017, 91(2):435-442.
[9] BAGAROLLI R A, TOBAR N, OLIVEIRA A G, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice [J]. The Journal of Nutritional Biochemistry, 2017, 50:16-25.
[10] AMERICAN DIABETES A. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018 [J]. Diabetes Care, 2018, 41(Suppl 1): S13-S27.
[11] VIJAY-KUMAR M, AITKEN J D, CARVALHO F A, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5 [J]. Science, 2010, 328(5 975): 228-231.
[12] MAO B, LI D, ZHAO J, et al. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice [J]. Journal of agricultural and food chemistry, 2015, 63(3): 856-863.
[13] BHAT M I, SINGH V K, SHARMA D, et al. Adherence capability and safety assessment of an indigenous probiotic strain Lactobacillus rhamnosus MTCC-5897 [J]. Microbial Pathogenesis, 2019, 130:120-130.
[14] CHEN P, ZHANG Q, DANG H, et al. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin [J]. Nutrition, 2014, 30(9): 1 061-1 068.
[15] LIPSKA K J, WARTON E M, HUANG E S, et al. HbA1c and risk of severe hypoglycemia in type 2 diabetes: The diabetes and aging study[J]. Diabetes Care, 2013, 36(11): 3 535-3 542.
[16] CHEN P, ZHANG Q, DANG H, et al. Oral administration of Lactobacillus rhamnosus CCFM0528 improves glucose tolerance and cytokine secretion in high-fat-fed, streptozotocin-induced type 2 diabetic mice [J]. Journal of Functional Foods, 2014, 10:318-326.
[17] KIM S W, PARK K Y, KIM B, et al. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production [J]. Biochemical and Biophysical Research Communications, 2013, 431(2): 258-263.
[18] CHEN P, ZHANG Q, DANG H, et al. Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity [J]. Food Control, 2014, 35(1): 65-72.
[19] EJTAHED H S, MOHTADI-NIA J, HOMAYOUNI-RAD A, et al. Probiotic yogurt improves antioxidant status in type 2 diabetic patients [J]. Nutrition, 2012, 28(5): 539-543.
[20] LIM S M, JEONG J J, WOO K H, et al. Lactobacillus sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression [J]. Nutrition Research, 2016, 36(4): 337-348.
[21] LI C, DING Q, NIE S P, et al. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats[J]. Joumal of agricuture and Food Chemistry, 2014, 62(49): 11 884-11 891.
[22] GARLAND S H. Short chain fatty acids may elicit an innate immune response from preadipocytes: A potential link between bacterial infection and inflammatory diseases [J]. Med Hypotheses, 2011, 76(6): 881-883.
[23] PENG L, LI Z R, GREEN R S, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers [J]. The Journal of Nutrition, 2009, 139(9): 1 619-1 625.
[24] MANDALIYA D K, SESHADRI S. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes [J]. Pancreatology, 2019, 19(24): 617-622.
[25] MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 [J]. Nature, 2009, 461(7 268): 1 282-1 286.
[26] VIEIRA E L M, LEONEL A J, SAD A P, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis [J]. J Nutr Biochem, 2012, 23(5): 430-436.
[27] PASCALE A, MARCHESI N, GOVONI S, et al. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: New insights into old diseases [J]. Current Opinion in Pharmacology, 2019, 49:1-5.
[28] ZHANG B, SUN W, YU N, et al. Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats [J]. Journal of Functional Foods, 2018, 46:256-267.
[29] LI C, NIE S P, DING Q, et al. Cholesterol-lowering effect of Lactobacillus plantarum NCU116 in a hyperlipidaemic rat model [J]. Journal of Functional Foods, 2014, 8:340-347.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[3] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[4] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[5] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[6] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[7] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[8] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[9] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[10] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[11] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[12] 刘卫宝, 余讯, 徐静静, 詹晓北, 张洪涛, 朱莉. 黄芪多糖的分离、结构表征及益生活性研究[J]. 食品与发酵工业, 2020, 46(7): 50-56.
[13] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[14] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[15] 卫莹, 魏红燕, 张蕊萌, 沈明花. 榛蘑粗多糖对脂多糖诱导的大鼠急性肺损伤的保护作用[J]. 食品与发酵工业, 2020, 46(24): 80-84.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn