Please wait a minute...
食品与发酵工业  2019, Vol. 45 Issue (24): 246-253    DOI: 10.13995/j.cnki.11-1802/ts.022102
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
刘振民1*, 庞佳坤1,2, 郑远荣1
1 (乳业生物技术国家重点实验室,上海乳业生物工程技术研究中心,光明乳业股份有限公司乳业研究院,上海,200436)
2 (上海海洋大学 食品学院,上海,201306)
Research progress on enzymatic preparation and evaluation methodology of whey protein derived antioxidant peptides
LIU Zhenmin1*, PANG Jiakun1,2, ZHENG Yuanrong1
1 (State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology,Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China)
2 (College of Food Science and Technology,Shanghai Ocean University, Shanghai 201306, China)
下载:  HTML   PDF (1382KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧化应激可引起细胞损伤和多种慢性疾病,饮食中的抗氧化剂可以帮助人体清除自由基。人工合成的抗氧化剂虽然具有很强的活性,但在机体内存在潜在的风险,因此,人们把目光转向了天然的抗氧化剂。近年来乳清中的乳清蛋白因其衍生肽具有较强的抗氧化活性而备受关注。该文综述了乳清蛋白源抗氧化肽的酶法制备及抗氧化的作用机理,归纳并对比了其抗氧化活性评价方法,指出了目前乳清蛋白源抗氧化肽在动物机体内的活性评价及作用机理方面的研究仍存在不够深入的问题,以期为进一步综合利用乳清蛋白产品提供思路。
E-mail Alert
关键词:  氧化应激  乳清蛋白  抗氧化肽  酶法制备    
Abstract: The mechanism of the antioxidant peptides in vivo has not been fully elucidated. There are different evaluation methodologies without unified standard for antioxidant activity, which makes the conclusions lack comparability. In order to provide references for comprehensive utilization of whey protein, recent achievements on the enzymatic preparation of whey protein-derived antioxidant peptides as well as related evaluation methodology were reviewed. Effect of different enzymatic preparation conditions on antioxidant peptides, functional mechanism of antioxidant peptides, and comparison of different evaluation methodologies for antioxidant activity were also reviewed.
Key words:  oxidative stress    whey protein    antioxidant peptide    enzymatic preparation
收稿日期:  2019-08-27                     发布日期:  2020-02-10      期的出版日期:  2019-12-25
基金资助: 国家重点研发计划(乳蛋白水解特异性研究及特定功能性乳制品开发)(2018YFC1604205);上海乳业生物工程技术研究中心(19DZ2281400)
作者简介:  博士,教授级高级工程师(本文通讯作者,。
刘振民,庞佳坤,郑远荣. 乳清蛋白源抗氧化肽的酶法制备及评价方法的研究进展[J]. 食品与发酵工业, 2019, 45(24): 246-253.
LIU Zhenmin,PANG Jiakun,ZHENG Yuanrong. Research progress on enzymatic preparation and evaluation methodology of whey protein derived antioxidant peptides[J]. Food and Fermentation Industries, 2019, 45(24): 246-253.
链接本文:  或
[1] LI S,TAN H Y,WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. International Journal of Molecular Sciences, 2015, 16(11): 26 087-26 124.
[2] GILGUN-SHERKI Y,MELAMED E,OFFEN D. Oxidative stress induced-neurodegenerative diseases: the Need for Antioxidants That Penetrate the Blood Brain Barrier[J]. Neuropharmacology, 2001, 40(8): 959-975.
[3] KLEIN J A,ACKERMAN S L. Oxidative stress, cell cycle, and neurodegeneration[J]. Journal of Clinical Investigation, 2003, 111(6): 785-793.
[4] WARIS G,AHSAN H. Reactive Oxygen Species: Role in the Development of Cancer and Various Chronic Conditions[J]. Journal of Carcinogenesis, 2006, 5(1): 14.
[5] LEE J,KOO N,MIN D B. Reactive Oxygen Species, Aging, and antioxidative nutraceuticals[J]. Comprehensive Reviews in Food Science and Food Safety, 2004, 3(1): 21-33.
[6] LOENN M E,DENNIS J M,STOCKER R. Actions of "antioxidants" in the protection against atherosclerosis[J]. Free Radical Biology and Medicine, 2012, 53(4): 863-884.
[7] SUGAMURA K,KEANEY J F. Reactive oxygen species in cardiovascular disease[J]. Free Radical Biology and Medicine, 2011, 51(5): 978-992.
[8] ZHOU D,WANG W,CHENG X, et al. Antioxidant therapy for patients with chronic pancreatitis: A systematic review and meta-analysis[J]. Clinical Nutrition, 2015, 34(4): 627-634.
[9] VALKO M,LEIBFRITZ D,MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(1): 44-84.
[10] NIKI E. Assessment of antioxidant capacity in vitro and in vivo[J]. Free Radical Biology and Medicine, 2010, 49(4): 503-515.
[11] GAD A S,KHADRAWY Y A,EI-NEKEETY A A, et al. Antioxidant activity and hepatoprotective effects of whey protein and spirulina in rats[J]. Nutrition, 2011, 27(5): 582-589.
[12] LE-MAUX S,NONGONIERMA A B,BARRE C, et al. Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled Conditions: Impact on physicochemical and bioactive properties[J]. Food Chemistry, 2016, 199: 246-251.
[13] DRYÁKOVÁ A,PIHLANTO A,MARNILA P, et al. Antioxidant properties of whey protein hydrolysates as measured by three methods[J]. European Food Research and Technology, 2010, 230(6): 865-874.
[14] O′KEEFFE M B,FITZGERALD R J. Antioxidant effects of enzymatic hydrolysates of whey protein concentrate on cultured human endothelial cells[J]. International Dairy Journal, 2014, 36(2): 128-135.
[15] ZHANG Q X,WU H,LING Y F, et al. Isolation and Identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOFf MS[J]. Journal of Dairy Research, 2013, 80(3): 367-373.
[16] LIN S,TIAN W,LI H, et al. Improving antioxidant activities of whey protein hydrolysates obtained by thermal preheat treatment of pepsin, trypsin, alcalase and flavourzyme: Improve antioxidant activities of whey protein[J]. International Journal of Food Science and Technology, 2012, 47(10): 2 045-2 051.
[17] ADJONU R,DORAN G,TORLEY P, et al. Screening of whey protein isolate hydrolysates for their dual functionality: Influence of heat pre-treatment and enzyme specificity[J]. Food Chemistry, 2013, 136(3-4): 1 435-1 443.
[18] PENG X,KONG B,XIA X, et al. Reducing and radical-scavenging activities of whey protein hydrolysates prepared with alcalase[J]. International Dairy Journal, 2010, 20(5): 360-365.
[19] ÕNAY-UCAR E,ARDA N,PEKMEZ M, et al. Comparison of antioxidant capacity, protein profile and carbohydrate content of whey protein fractions[J]. Food Chemistry, 2014, 150: 34-40.
[20] MANN B,KUMARI A,KUMAR R, et al. Antioxidant activity of whey protein hydrolysates in milk beverage system[J]. Journal of Food Science & Technology, 2015, 52(6): 3 235-3 241.
[21] BERTUCCI J I,LIGGIERI C S,COLOMBO M L, et al. Application of peptidases from maclura pomifera fruit for the production of active biopeptides from whey protein[J]. Lwt - Food Science and Technology, 2015, 64(1): 157-163.
[22] HERNÕNDEZ-LEDESMA B,DÕVALOS A,BARTOLOMÉ B, et al. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2005, 53(3): 588-593.
[23] NONGONIERMA A B,FITZGERALD R J. Inhibition of dipeptidyl peptidase Iv (dpp-iv) by tryptophan containing dipeptides[J]. Food & Function, 2013, 4(12): 1 843-1 849.
[24] SADAT L,CAKIR-KIEFER C,N’NEGUE M A, et al. Isolation and identification of antioxidative peptides from bovine α-lactalbumin[J]. International Dairy Journal, 2011, 21(4): 214-221.
[25] CHEN H,MURAMOTO K,YAMAUCHI F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein[J]. Journal of Agricultural and Food Chemistry, 1998, 46(1): 49-53.
[26] POWER O,JAKEMAN P,FITZGERALD R J. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides[J]. Amino Acids, 2013, 44(3): 797-820.
[27] CHAN K M,DECKER E A, FEVSTMAN C. Endogenous skeletal muscle antioxidants[J]. Critical Reviews in Food Science & Nutrition, 1994, 34(4): 403-426.
[28] YAO-WANG L,BO L,JIGUO H, et al. Structure-activity relationship study of antioxidative peptides by qsar modeling: the amino acid next to C-terminus affects the activity[J]. Journal of Peptide Science, 2011, 17(6): 454-462.
[29] LIANG N,KITTS D D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action[J]. Molecules, 2014, 19(11): 19 180-19 208.
[30] CORREA APF,DAROIT D J,COELHO J G, et al. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease[J]. Journal of the Science of Food and Agriculture, 2011, 91(12): 2 247-2 254.
[31] BENZIE I F F,STRAIN J J. The ferric reducing ability of plasma (frap) as a measure of "antioxidant power": The FRAP assay[J]. Analytical Biochemistry, 1996, 239(1): 70-76.
[32] OU B,HAMPSCH-WOODILL M,PRIOR R L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe[J]. Journal of Agricultural and Food Chemistry, 2001, 49(10): 4 619-4 626.
[33] TSENG Y M, LIN S K,HSIAO J K, et al. Whey protein concentrate promotes the production of glutathione (gsh) by gsh reductase in the Pc12 cell line after acute ethanol exposure[J]. Food & Chemical Toxicology, 2006, 44(4): 574-578.
[34] PYO M C,YANG S Y,CHUN S H, et al. Protective effects of maillard reaction products of whey protein concentrate against oxidative stress through an Nrf2-dependent pathway in Hepg2 cells[J]. Biological & Pharmaceutical Bulletin, 2016, 39(9): 1 437.
[35] XU R,LIU N,XU X, et al. Antioxidative effects of whey protein on peroxide-induced cytotoxicity[J]. Journal of Dairy Science, 2011, 94(8): 3 739-3 746.
[36] KONG B,PENG X,XIONG Y L, et al. Protection of lung fibroblast mrc-5 cells against hydrogen peroxide-induced oxidative damage by 0.1-2.8 KDA antioxidative peptides isolated from whey protein hydrolysate[J]. Food Chemistry, 2012, 135(2): 540-547.
[37] PURPURA M,LOWERY R P,JOY J M, et al. A comparison of blood amino acid concentrations following ingestion of rice and whey protein isolate: A double-blind, crossover study[J]. J Nutr Health Sci, 2014, 1(3): 306.
[38] POWER-GRANT O,BRUEN C,BRENNAN L, et al. In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: Targeting the enteroinsular axis[J]. Food & Function, 2015, 6(3): 972-980.
[39] PICCOLOMINI A F,ISKANDAR M M,LANDS L C, et al. High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and Il-8 secretion in intestinal epithelial cells[J]. Food & Nutrition Research, 2012, 56(1): 17 549.
[40] CORROCHANO A R,FERRARETTO A,ARRANZ E, et al. Bovine whey peptides transit the intestinal barrier to reduce oxidative stress in muscle cells[J]. Food Chemistry, 2019, 288: 306-314.
[41] JOUBRAN Y,MOSCOVICI A,LESMES U. Antioxidant activity of bovine alpha lactalbumin maillard products and evaluation of their in vitro gastro-duodenal digestive proteolysis[J]. Food & Function, 2015, 6(4): 1 229-1 240.
[42] GOLD P. The influence of dietary whey protein on tissue glutathione and the diseases of aging[J]. Clin Invest Med, 1989, 12(6): 343-349.
[43] ASHOUSH I S,EL-BATAWY O I,EL-SHOURBAGY G A. Antioxidant activity and hepatoprotective effect of pomegranate peel and whey powders in rats[J]. Annals of Agricultural Sciences, 2013, 58(1): 27-32.
[44] KIM J,PAIK H D,YOON Y C, et al. Whey protein inhibits iron overload-induced oxidative stress in rats[J]. Journal of Nutritional Science and Vitaminology, 2013, 59(3): 198-205.
[45] ATHIRA S,MANN B,SHARMA R, et al. Ameliorative potential of whey protein hydrolysate against paracetamol-induced oxidative stress[J]. Journal of Dairy Science, 2013, 96(3): 1 431-1 437.
[46] HARAGUCHI F K,SILVA M E,NEVES L X, et al. Whey protein precludes lipid and protein oxidation and improves body weight gain in resistance-exercised rats[J]. European Journal of Nutrition, 2011, 50(5): 331-339.
[47] MIDDLETON N,JELEN P,BELL G. Whole blood and mononuclear cell glutathione response to dietary whey protein supplementation in sedentary and trained male human subjects[J]. International Journal of Food Sciences and Nutrition, 2004, 55(2): 131-141.
[48] SHEIKHOLESLAMI D V,AHMADI F K G. Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training[J]. Appetite, 2012, 59(3): 673-678.
[49] CHITAPANARUX T,TIENBOON P,POJCHAMARNWIPUTH S, et al. Open-labeled pilot study of cysteine-rich whey protein isolate supplementation for nonalcoholic steatohepatitis patients[J]. Journal of Gastroenterology and Hepatology, 2009, 24(6): 1 045-1 050.
[50] ZAVORSKY G S,KUBOW S,GREY V, et al. An Open-label dose-response study of lymphocyte glutathione levels in healthy men and women receiving pressurized whey protein isolate supplements[J]. International Journal of Food Sciences and Nutrition, 2007, 58(6): 429-436.
[51] SHIMIZU H,KIYOHARA Y,KATO I, et al. Relationship between plasma glutathione levels and cardiovascular disease in a defined population: The hisayama study[J]. Stroke, 2004, 35(9): 2 072-2 077.
[1] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[2] 刘婷, 周欣, 赵超, 龚小见, 陈华国. 植物多糖对肾损伤干预效果及作用机制研究进展[J]. 食品与发酵工业, 2021, 47(7): 269-277.
[3] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[4] 张强, 李伟华. 抗氧化肽的研究现状[J]. 食品与发酵工业, 2021, 47(2): 298-304.
[5] 陈嘉琪, 崔树茂, 唐鑫, 刘小鸣, 赵建新, 陈卫. 德式乳杆菌保加利亚亚种的乳清蛋白利用能力比较[J]. 食品与发酵工业, 2020, 46(7): 28-34.
[6] 白英, 杨月娇, 谢瑞鹏. 果胶-乳清蛋白混合比例和pH值对体系流变学特性的影响[J]. 食品与发酵工业, 2020, 46(18): 61-66.
[7] 丁亮亮, 刘进生, 顾鹏帅, 唐蕾. 大肠杆菌过氧化物酶EfeB在细胞氧化应激中的作用[J]. 食品与发酵工业, 2020, 46(17): 33-39.
[8] 王耀松, 马天怡, 张唯唯, 黄梅桂, 应瑞峰, 胡荣蓉, 唐长波. L-精氨酸/L-赖氨酸对乳清蛋白凝胶质构和持水性的影响[J]. 食品与发酵工业, 2020, 46(17): 46-53.
[9] 王文琼, 孙志勇, 黄冬成, 张杰龙, 张志贤, 李颖, 顾瑞霞. 乳酸菌发酵对乳清蛋白蓝莓果汁体系特性的影响[J]. 食品与发酵工业, 2020, 46(13): 42-48.
[10] 杨晓飞,梅林,薛秀恒,王志耕. 乳清蛋白-甜橙油包合物的制备及其性质研究[J]. 食品与发酵工业, 2019, 45(5): 80-86.
[11] 朱诗雅, 翟齐啸, 赵星, 孙新凯, 路江浩, 李华文, 赵建新, 张灏, 田丰伟, 陈卫. 不同乳杆菌缓解慢性酒精性肝损伤的作用比较[J]. 食品与发酵工业, 2019, 45(22): 20-26.
[12] 陈莹莹, 涂桂飞, 栾东磊. 基于三文鱼介电特性的模拟食品研发[J]. 食品与发酵工业, 2019, 45(22): 117-123.
[13] 陈胜军, 蔡苗苗, 杨贤庆, 杨少玲, 李春生. 海洋藻类来源ACE IPs的酶法制备及评价模型的研究进展[J]. 食品与发酵工业, 2019, 45(20): 298-303.
[14] 王惠敏, 户佩, 蔡甜甜, 徐淑丽, 洪晶, 汪少芸. 抗氧化胡萝卜籽肽的分离鉴定及活性表征[J]. 食品与发酵工业, 2019, 45(2): 95-100.
[15] 岳建伟, 师希雄, 孙金龙, 余群力, 朱琪. 宰后成熟过程中活性氧介导的氧化应激对肉品质的影响[J]. 食品与发酵工业, 2019, 45(2): 247-251.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持