Research progress on anti-hyperuricemic peptides obtained from food proteins
HU Xiao1*, ZHOU Ya1,2, YANG Xianqing1, WU Yanyan1, CHEN Shengjun1, LI Laihao1, MA Haixia1
1(Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China); 2(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
Abstract: Hyperuricemia is a chronic disease caused by disorders of purine metabolism, which can seriously threaten human health. Prolonged hyperuricemia may lead to gout. Drugs such as allopurinol and colchicine, which are currently used in the treatment of hyperuricemia, have strong side effects. Therefore, researchers in China and other countries are focused on seeking effective and safe natural anti-hyperuricemic bioactive compounds. Food-derived anti-hyperuricemic peptides refer to bioactive peptides prepared from animal or plant proteins and have the effect of lowering uric acid in vivo. This paper contains a review of the preparation, purification, functional activity evaluation, and structure identification of food-derived anti-hyperuricemic peptides. The development trend of the research field has been prospected, with an aim to provide a reference for the research and development of uric anti-hyperuricemic functional foods.
[1] 邹筱芳,巫冠中.尿酸肾损伤的分子机制研究进展[J].安徽医药,2015,19(1):5-9. [2] WANG J, CHEN R P, LEI L, et al. Prevalence and determinants of hyperuricemia in type 2 diabetes mellitus patients with central obesity in Guangdong Province in China[J].Asia Pacific Journal of Clinical Nutrition,2013,22(4):590-598. [3] KRISHNAN E. Interaction of inflammation, hyperuricemia, and the prevalence of hypertension among adults free of metabolic syndrome: nhanes 2009-2010[J].Journal of the American Heart Association,2014,3(2):e000 157-e000 157. [4] YOU L L, LIU A P, WUYUN G W, et al. Prevalence of hyperuricemia and the relationship between serum uric acid and metabolic syndrome in the Asian Mongolian area[J]. Journal of Atherosclerosis and Thrombosis,2014,21(4):355-365. [5] GUSTAFSSON D, UNWIN R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality[J]. BMC Nephrology,2013,14(1):164. [6] CHEN S, GUO X, DONG S, et al. Association between the hypertriglyceridemic waist phenotype and hyperuricemia:A cross-sectional study[J].Clinical Rheumatology,2017,36(5):1 111-1 119. [7] 马金魁,张宏斌.高尿酸血症及治疗药物的研究进展[J].广东医学,2018,39(s2):262-267. [8] 王朝晖,苏冠华.临床用药速查手册[M].北京:中国协和医科大学出版社,2009. [9] 曹启江,宋庆凤,姚满,等.治疗痛风新型药物研究进展[J].广东医学,2019,40(10):1 497-1 500. [10] 艾国,杜丽娜,梅兴国.蛋白质、多肽类药物新剂型与新技术发展动态[J].中国生化药物杂志,2004,25(6):366-369. [11] 吴建中,赵谋明,宁正祥.食品中的生物活性多肽[J].食品与发酵工业,2002,28(11):46-50. [12] 王成华,邢新会.黄嘌呤氧化酶的研究进展及其发展前景[J].广西科学,2017,24(1):15-24. [13] 刘晓然,李泰明.黄嘌呤氧化酶抑制剂在高尿酸血症治疗中的研究进展[J].轻工科技,2017,33(9):20-21. [14] 赵莹, 张启虹, 冯明声, 等. 降尿酸药物黄嘌呤氧化酶抑制剂的研究进展[J]. 药学进展, 2009, 33(2):55-61. [15] 黎青勇.核桃源降尿酸肽靶向抑制黄嘌呤氧化酶活性的构效机制研究[D].广州:华南理工大学,2018. [16] NONGONIERMA A B, FITZGERLD R J. Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase[J]. Peptides, 2012, 37(2):263-272. [17] NONGONIERMA A B, MOONEY C, SHIELDS D C, et al. Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides[J]. Food Chemistry, 2013, 141(1):644-653. [18] 刘洋.海洋鱼抗痛风肽的制备及其作用机理研究[D].广州:华南理工大学,2014. [19] 张开平,苏仕林,刘燕丽,等.生物活性肽功能及制备方法的研究进展[J].农产品加工,2015(12):61-64. [20] SU X, DONG C, ZHANG J, et al. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer[J].Cell and Bioscience, 2014,4(1):1-13. [21] 阮晓慧,韩军岐,张润光,等.食源性生物活性肽制备工艺、功能特性及应用研究进展[J].食品与发酵工业,2016,42(6):248-253. [22] 刘铭,刘玉环,王允圃,等.制备、纯化和鉴定生物活性肽的研究进展及应用[J].食品与发酵工业,2016,42(4):244-251. [23] LI Q Y, KANG X Y, SHI C C, et al. Moderation of hyperuricemic rats via consuming walnut protein hydrolysates diet and identification of new antihyperuricemic peptides[J].Food and Function.2018, 9(1):107-116. [24] LIU N X, WANG Y, YANG M F, et al. New rice-derived short peptide potently alleviated hyperuricemia induced by potassium oxonate in rats [J]. Journal of Agricultural and Food Chemistry,2019,67(1):220-228. [25] JANG I T, HYUN S H, SHIN J W, et al. Characterization of an anti-gout xanthine oxidase inhibitor from Pleurotus ostreatus[J]. Mycobiology,2014,42(3):296-300. [26] 盛周煌.罗非鱼皮胶原蛋白降尿酸活性肽的研究[D].广州:华南理工大学,2018. [27] 邹琳.鲣鱼黄嘌呤氧化酶抑制肽的酶解制备及功能活性评价[D].杭州:浙江大学,2019. [28] LI Y J, KANG X Y, LI Q Y, et al. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity[J].Peptides,2018,107:45-53. [29] MUROTA I, TAGUCHI S, SATO N, et al. Identification of antihyperuricemic peptides in the proteolytic digest of shark cartilage water extract using in vivo activity-guided fractionation[J].Journal of Agricultural and Food Chemistry,2014, 62(11):2 392-2 397. [30] HE W W, SU G W, SUN D X, et al. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions[J].Food Chemistry,2019,272:453-461. [31] 赵谋明,徐巨才,刘洋,等.秋刀鱼制备黄嘌呤氧化酶抑制肽的工艺优化[J].农业工程学报,2015,31(14):291-297. [32] 白雪,李丹凤,王婷婷,等.发酵法制备生物活性肽及其产物的初步分析[J].食品工业科技,2013,34(23):201-205. [33] MUROTA I, TAMAI T, BABA T, et al. Uric acid lowering effect by ingestion of proteolytic digest of shark cartilage and its basic fraction[J].Journal of Food Biochemistry,2010,34(1):182-194. [34] YU L, YANG L, AN W, et al. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells[J].Journal of Cellular Biochemistry,2014,115(4):697-711. [35] LI Q Y, SHI C C, WANG M, et al. Tryptophan residue enhances in vitro walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities[J].Journal of Functional Foods,2019,53(53):276-285. [36] 任娇艳,康小燕.一种具有降尿酸活性的多肽及其应用:中国,106317178A[P].2017-01-11. [37] 杨方威,冯叙桥,曹雪慧, 等.膜分离技术在食品工业中的应用及研究进展[J].食品科学,2014,35(11):330-338. [38] 王志斌,杨宗伟,邢晓林,等.膜分离技术应用的研究进展[J].过滤与分离,2008,18(2):19-23. [39] 苏国万,赵谋明,赵强忠,等.一种用核桃粕制备具有降尿酸功效的生物活性肽的方法:中国,103627760A[P].2014-03-12. [40] 刘丹,任娇艳,梁明.高尿酸血症细胞模型的构建及其在降尿酸肽筛选中的应用[J].现代食品科技,2017,33(8):72-79. [41] 杨柳,康小燕,梁明,等.筛选降尿酸肽的体外测定方法的建立与优化[J].现代食品科技,2018,34(4):249-257. [42] 康小燕. 磁性微球固定化黄嘌呤氧化酶的制备及其分离降尿酸肽的研究[D].广州:华南理工大学,2017. [43] 王晗,张敏,路腾飞,等.高尿酸血症动物模型研究进展[J].天津中医药大学学报,2014,33(4):253-256. [44] 刘静,徐玲玲.常用痛风模型的作用机制及评价[J].中国药师,2012,15(8):1 193-1 194. [45] 杨会军,李兆福,彭江云.高尿酸血症动物模型研究概况[J].中医学报,2013,28(1):60-62. [46] 马思佳,霍娇,张立实.高尿酸血症动物模型研究进展[J].卫生研究,2015,44(1):158-162. [47] PINEDA C, FUENTES-GMEZ, ARTURO J, et al. Animal model of acute gout reproduces the inflammatory and ultrasonographic joint changes of human gout[J]. Arthritis Research and Therapy,2015,17(1):37. [48] SANTOS R M S, OLIVEIRA S M, SILVA C R, et al. Anti-nociceptive and anti-edematogenic effects of glibenclamide in a model of acute gouty attack in rats[J].Inflammation Research,2013,62(6):617-625. [49] 费洪新,韩玉生,廖婷,等.车前子对小鼠急性痛风性关节炎的影响[J].黑龙江科学,2014,5(5):9-11. [50] KUBENA L F, PHILLIPS T D, CREGER C R, et al. Toxicity of ochratoxin A and tannic acid to growing chicks[J]. Poultry Science,1983,62(9):1 786-1 793. [51] 孙婷婷,李妍妍,周君,等.仿刺参酶解液抑制黄嘌呤氧化酶活性的研究[J].中国食品学报,2019,19(7):128-137. [52] 石拓,卢存龙,李龙,等.液相色谱-质谱研究高尿酸血症大鼠血清代谢组学[J].基础医学与临床,2019,39(3):337-342. [53] 孙敏.蜂毒活性肽的分离纯化及生理功能研究[D].济南:济南大学,2017. [54] 张锐,姚芳芳,何伟.酪蛋白磷酸肽、钙粉及二者复合物对高尿酸血症大鼠的影响[J].食品科学, 2010, 31(21):332-334. [55] ASHA K K, REMYA-KUMARI K R, ASHOK-KUMAR K, et al. Sequence determination of an antioxidant peptide obtained by enzymatic hydrolysis of oyster Crassostrea madrasensis (Preston)[J].International Journal of Peptide Research and Therapeutics, 2016, 22(3):421-433.