Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (4): 19-27    DOI: 10.13995/j.cnki.11-1802/ts.022442
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
植物乳杆菌最适生长底物解析及高密度培养工艺
王玉林1, 黄洁2, 崔树茂1*, 唐鑫1, 毛丙永1, 赵建新1, 张灏1, 陈卫1
1(江南大学 食品学院,江苏 无锡,214122);
2(苏州硒泰克生物科技有限公司,江苏 苏州,215200)
Analysis of optimal growth substrate and high-density culture process ofLactobacillus plantarum
WANG Yulin1, HUANG Jie2, CUI Shumao1*, TANG Xin1, MAO Bingyong1, ZHAO Jianxin1, ZHANG Hao1, CHEN Wei1
1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China);
2(Suzhou Setech Biotechnology Co., Ltd, Suzhou 215200, China)
下载:  HTML   PDF (2432KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高植物乳杆菌的增殖浓度,分别测定菌株在添加不同氮源、不同缓冲盐、不同浓度的MnSO4和不同促生长物质时菌株的生长浓度。结果表明,酵母类氮源是植物乳杆菌的最适氮源,缓冲盐在恒pH培养时对菌株生长无促进作用,锰浓度与最高活菌数呈正相关,在以酵母浸粉为氮源时植物乳杆菌培养不需要添加其他生长因子。进一步优化菌株的最适pH值和碳氮比,基于可耐受渗透压,优化恒pH培养和恒pH自动反馈补料培养基和培养工艺,得到各菌株的最适培养策略。3株菌的最适氮源添加量为40~45 g/L,MnSO4的最适添加量为0.25 g/L,最适碳氮比为对数生长期生长速率被抑制时的碳氮消耗比。恒pH 5.5自动反馈补料培养植物乳杆菌X1,活菌数达到4.1×1010 CFU/mL;恒pH 5.5分批培养植物乳杆菌N8,活菌数达到2.9×1010 CFU/mL;恒pH 6.0分批培养植物乳杆菌N9,活菌数达到6.2×1010CFU/mL。该研究结果的应用将显著提高植物乳杆菌的工业化生产效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉林
黄洁
崔树茂
唐鑫
毛丙永
赵建新
张灏
陈卫
关键词:  植物乳杆菌  氮源  渗透压  培养策略  活菌数    
Abstract: To increase the proliferation concentration of Lactobacillus plantarum(L.plantarum), the effects of different nitrogen sources, buffer salts, different concentrations of manganese sulfate and growth-promoting substances were studied. The results showed that yeast extract was the most suitable nitrogen source for L.plantarum. While buffer salt had no effect on the growth of the strain under pH-controlled condition. The concentration of manganese sulfate was positively correlated with the viable cell count that the strain could reach. No other growth-promoting substances was needed for the culture of L.plantarum when yeast extract was used as nitrogen source. The optimum pH and carbon-nitrogen ratio of the strain were further optimized. Based on the osmotic pressure that could be tolerated by the strain, the medium and process conditions for the culture with pH-controlled and the culture with automatic feedback feeding method were optimized to obtain the optimal culture strategy. The optimum concentration of nitrogen source and manganese sulfate for the three L.plantarum strains were 40-45 g/L and 0.25 g/L, respectively. The optimum carbon-nitrogen ratio was the mass ratio of carbon source and nitrogen source consumed when the growth rate of L.plantarum was inhibited. The viable count of L.plantarum X1 reached 4.1×1010 CFU/mL when pH-controlled 5.5 using the automatic feedback feeding method. The viable count of L.plantarum N8 reached 2.9×1010 CFU/mL using batch culture at pH 5.5. The viable count of L.plantarum N9 reached 6.2×1010 CFU/mL using batch culture with pH-controlled 6.0. The application of this research could significantly improve the industrial production efficiency of L.plantarum.
Key words:  L.plantarum    nitrogen source    osmotic pressure    culture strategy    viable counts
收稿日期:  2019-10-01                出版日期:  2020-02-25      发布日期:  2020-04-07      期的出版日期:  2020-02-25
基金资助: 国家青年科学基金项目(31801530);国家食品科学与工程一流学科建设项目(JUFSTR20180102)
作者简介:  硕士研究生(崔树茂助理研究员为通讯作者,E-mail: cuishumao@jiangnan.edu.cn)
引用本文:    
王玉林,黄洁,崔树茂,等. 植物乳杆菌最适生长底物解析及高密度培养工艺[J]. 食品与发酵工业, 2020, 46(4): 19-27.
WANG Yulin,HUANG Jie,CUI Shumao,et al. Analysis of optimal growth substrate and high-density culture process ofLactobacillus plantarum[J]. Food and Fermentation Industries, 2020, 46(4): 19-27.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022442  或          http://sf1970.cnif.cn/CN/Y2020/V46/I4/19
[1] 熊涛, 黄锦卿, 宋苏华, 等. 植物乳杆菌发酵培养基的优化及其高密度培养技术[J]. 食品科学, 2011, 32(7): 262-268.
[2] CUI S, ZHAO J, LIU X, et al. Maximum-biomass prediction of homofermentative Lactobacillus[J]. Journal of Bioscience & Bioengineering, 2016, 122(1): 52-57.
[3] 华宝珍, 李莎, 徐爱才, 等. 植物乳杆菌ST-Ⅲ脱脂乳的发酵工艺优化[J]. 农业工程学报, 2014, 30(11): 276-284.
[4] 韩庆功,崔艳红,王元元,等.植物乳杆菌的生理特性及体外益生效果研究[J]. 粮食与饲料工业, 2018(3):42-46.
[5] MANN G V. Studies of a surfactant and cholesteremia in the Maasai[J]. American Journal of Clinical Nutrition, 1974, 27(5): 464-469.
[6] KIM Y, YOON S,LEE-S B, et al. Fermentation of soy milk via Lactobacillus plantarum improves dysregulated lipid metabolism in rats on a high cholesterol diet[J]. Plos One, 2014, 9(2): e88 231.
[7] THIRAWORAWONG T, SPINLER J K, WERAWATGANON D, et al. Anti-inflammatory properties of gastric-derived lactobacillus plantarum XB7 in the context of helicobacter pylori Infection[J]. Helicobacter, 2014, 19(2): 144-55.
[8] PANWAR H, CALDERWOOD D, GRANT I R, et al. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential [J]. European Journal of Nutrition, 2014, 53(7): 1 465-1 474.
[9] LOOIJESTEIJN PJBOELS I C, KLEEREBEZEM M, HUGENHOLTZ J. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source [J]. Appl Environ Microbiol, 1999, 65(11): 5 003-5 008.
[10] 徐洪伟, 鞠红梅, 孙琪, 等. 小分子肽产生菌培养基碳源与氮源的优化[J]. 中国卫生检验杂志, 2011, 21(8): 1 931-1 932.
[11] 朱丹凤, 王园园, 崔树茂, 等. 罗伊氏乳杆菌氮源利用的选择性与特征分析[J]. 食品与发酵工业, 2018,44(11): 39-45.
[12] 张白曦, 李敏, 陈海琴, 等. 氮源对解脂耶氏酵母合成共轭亚油酸的影响[J]. 食品与发酵工业, 2016,43(3): 8-11.
[13] Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coliusing the Bacillussp. endoxylanase signal sequence [J]. Applied Microbiology & Biotechnology, 2000,53(6): 640-645.
[14] 童群义, 陈坚. 恒pH补料分批培养技术培养谷胱甘肽合成酶系 [J]. 食品与生物技术学报, 2002, 21(4): 350-356.
[15] NEWBY D, MARKS L, LYALL F. Dissolved oxygen concentration in culture medium: Assumptions and pitfalls[J]. Placenta, 2005, 26(4): 353-357.
[16] PAN J G, RHEE J S, LEBEAULT J M. Physiological constraints in increasing biomass concentration of Escherichia coli B in fed-batch culture [J]. Biotechnology Letters, 1987, 9(2): 89-94.
[17] XIONG T, SONG S H, HUANG J Q, et al. Tolerance of Lactobacillus plantarum NCU116 in Stimulated Digestive Environments [J]. Food Science, 2011, 32(11): 114-117.
[18] YE K, SHA J, SHIMIZU K. Fuzzy neural network for the control of high cell density cultivation of recombinant Escherichia coli[J]. Journal of Fermentation & Bioengineering, 1994, 77(6): 663-673.
[19] 杜越欧, 侯俊财. 乳酸菌蛋白水解体系及相关基因表达的研究进展 [J]. 食品工业科技, 2013, 34(3): 383-386.
[20] LIU M, BAYJANOV J R, RENCKENS B, et al. The proteolytic system of lactic acid bacteria revisited: A genomic comparison [J]. 11(1): 36.
[21] 王世强, 何伟杰. 磷酸缓冲盐对酸奶增菌发酵过程的影响 [J]. 食品工业科技, 2009, 30(6): 109-111.
[22] MORTH J P, PEDERSEN B P, TOUSTRUP-JENSEN M S, et al. Crystal structure of the sodium-potassium ump [J]. Nature, 2007, 450(7 172): 1 043-1 049.
[23] HALLIWELL B. Lignin synthesis: The generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (Ⅱ) and phenols[J]. Planta, 1978, 140(1): 81-88.
[24] KRISCHKE W, SCHR DER M, TR SCH W. Continuous production of l -lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei [J]. Applied Microbiology & Biotechnology, 1991, 34(5): 573-578.
[25] 崔树茂. 乳酸菌的生长抑制和冻干存活的影响因素及规律 [D]. 无锡:江南大学, 2017.
[26] CUI S, ZHAO J, LIU X, et al. Maximum biomass concentration prediction for Bifidobacteria in the pH-controlled fed-batch culture [J]. Letters in Applied Microbiology, 2016, 62(3): 256-263.
[1] 马申嫣, 王晶, 赵岩, 曹江, 翟齐啸, 张灏, 赵建新, 田丰伟, 陈卫. 以巧克力为载体的益生菌膳食补充剂的开发[J]. 食品与发酵工业, 2021, 47(9): 143-148.
[2] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[3] 孙媛媛, 崔树茂, 唐鑫, 毛丙永, 赵建新, 陈卫. 发酵乳杆菌的生长限制性因素分析及高密度培养工艺优化[J]. 食品与发酵工业, 2021, 47(6): 1-10.
[4] 蒋文鑫, 崔树茂, 毛丙永, 唐鑫, 赵建新, 张灏, 陈卫. 短双歧杆菌冻干保护剂的优选及高密度冻干工艺优化[J]. 食品与发酵工业, 2020, 46(9): 31-36.
[5] 易鑫, 周琦, 欧阳祝, 谈安群, 范佳莹, 李则灵, 朱霞建, 黄林华, 李贵杰, 王华. 乳酸菌富硒优化及其活性评价[J]. 食品与发酵工业, 2020, 46(8): 179-186.
[6] 胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业, 2020, 46(7): 161-166.
[7] 刘江, 程群, 王振兴, 孙健, 何雪梅, 刘大群, 周贵七, 熊智, 张雪春. 云南乳饼中乳酸菌的筛选及其功能活性[J]. 食品与发酵工业, 2020, 46(4): 160-166.
[8] 陈程, 程文君, 宫立鹏, 丁健, 史仲平. 以废弃毕赤酵母为高效氮源强化丁酸发酵生产[J]. 食品与发酵工业, 2020, 46(3): 22-29.
[9] 杨慧, 步雨珊, 刘奥, 刘同杰, 张兰威, 易华西. 产细菌素植物乳杆菌Q7对酸奶后酸化及品质的影响[J]. 食品与发酵工业, 2020, 46(3): 30-35.
[10] 周佳豪, 雷文平, 刘成国, 周辉, 周杏荣, 叶望娟. 高活菌数干酪乳杆菌LZ183E冻干保护剂的制备[J]. 食品与发酵工业, 2020, 46(24): 138-143.
[11] 汪雨晨, 陶阳, 李丹丹, 韩永斌, 姜小三, 姜应兵. 低频低强度超声波辅助植物乳杆菌发酵白果汁的代谢特性研究[J]. 食品与发酵工业, 2020, 46(22): 55-63.
[12] 黄玉龙, 孙若诗, 全婷, 刘燕, 慕钰文, 康三江, 张辉元. 利用菊糖生产L-乳酸的菌株筛选鉴定和发酵工艺优化[J]. 食品与发酵工业, 2020, 46(22): 161-166.
[13] 陈韫慧, 方思璇, 陈佳琪, 郭振新, 胡宇超, 艾连中, 王光强. 不同益生元对植物乳杆菌生长的影响[J]. 食品与发酵工业, 2020, 46(21): 28-33.
[14] 朱浩, 管军军, 刘雪, 郑建樟, 冀旭阳, 路新开. 植物乳杆菌在体外消化中对大豆蛋白-磷脂复合乳液的影响[J]. 食品与发酵工业, 2020, 46(20): 27-32.
[15] 王春幸, OHYOUNGJOO, 甘奕, KIMTAESUK, 李洪军, IKHYUNYEO, 贺稚非. 植物乳杆菌PMO的安全性分析[J]. 食品与发酵工业, 2020, 46(19): 28-34.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn