Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (13): 262-269    DOI: 10.13995/j.cnki.11-1802/ts.023790
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
辣椒素降糖作用及其机制研究进展
张世奇1, 唐兰兰2, 孙劲毅1, 杨娟1, 惠永海1*
1(岭南师范学院 化学化工学院,广东 湛江,524048)
2(西南大学 食品科学学院,重庆,400700)
Research progress on hypoglycemic effect and mechanism of capsaicin
ZHANG Shiqi1, TANG Lanlan2, SUN Jinyi1, YANG Juan1, HUI Yonghai1*
1(School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China)
2(Department of Food Science, Southwest University, Chongqing 400700, China)
下载:  HTML   PDF (1964KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 辣椒作为被广泛消费的蔬菜和香料之一,不仅能赋予食品特殊的风味,而且具有独特的生理功能。大量研究表明,辣椒素作为辣椒中提取的天然活性成分之一,在防治糖尿病及并发症方面具有显著效果。文章从糖代谢调控、改善胰腺功能、介导瞬时受体电位香草酸亚型1(transient receptor potential vanilloid 1, TRPV1)离子通道、调控内分泌系统以及调节肠道菌群等5个方面阐述辣椒素的抗糖尿病效果及其作用机制,评估其作为抗糖尿病药或辅助药剂的潜力,以期为后续防治糖尿病的相关研究提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张世奇
唐兰兰
孙劲毅
杨娟
惠永海
关键词:  糖尿病  辣椒素  降血糖  胰岛素  肠道菌群    
Abstract: As one of the most widely consumed vegetables and spices in the world, chili pepper not only gives food a special flavor, but also has unique physiological functions. A large amount of research evidence indicates that as one of the natural active ingredients extracted from chili pepper, capsaicin has significant effects in preventing and treating diabetes and complications. The anti-diabetic effect of capsaicin and its mechanism of action are described from five aspects: regulation of glucose metabolism, improvement of pancreatic function, mediation of TRPV1 (transient receptor potential vanilloid 1) ion channels, regulation of endocrine system, and intestinal flora. Simultaneously, the paper evaluates the potential of capsaicin as an anti-diabetic drug or adjuvant, intending to provide a theoretical basis for subsequent research on the prevention and treatment of diabetes.
Key words:  diabetes    capsaicin    hypoglycemic    insulin    intestinal flora
收稿日期:  2020-02-28                出版日期:  2020-07-15      发布日期:  2020-08-04      期的出版日期:  2020-07-15
基金资助: 国家自然科学基金项目(31471581);岭南师范学院人才专项(ZL1817)
作者简介:  博士,讲师 (惠永海副教授为通讯作者,E-mail:hyhai97@126.com)
引用本文:    
张世奇,唐兰兰,孙劲毅,等. 辣椒素降糖作用及其机制研究进展[J]. 食品与发酵工业, 2020, 46(13): 262-269.
ZHANG Shiqi,TANG Lanlan,SUN Jinyi,et al. Research progress on hypoglycemic effect and mechanism of capsaicin[J]. Food and Fermentation Industries, 2020, 46(13): 262-269.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023790  或          http://sf1970.cnif.cn/CN/Y2020/V46/I13/262
[1] GAVIN III J R, ALBERTI K, DAVIDSON M B, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 1997, 20(7): 1 183.
[2] CHO N H, SHAW J E, KARURANGA S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2018, 138: 271-281.
[3] BÜYÜKBALCI A, EL S N. Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas[J]. Plant Foods for Human Nutrition, 2008, 63(1): 27-33.
[4] SRINIVASAN K. Plant foods in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts[J]. International Journal of Food Sciences and Nutrition, 2005, 56(6): 399-414.
[5] 张晶, 孙长波, 石磊岭, 等. RP-HPLC法测定辣椒中辣椒素、二氢辣椒素和降二氢辣椒素含量[J]. 药物分析杂志, 2011, 31(2): 244-246.
[6] CHAIYASIT K, KHOVIDHUNKIT W, WITTAYALERTPANYA S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level[J]. Chotmaihet Thangphaet, 2009, 92(1):108-113.
[7] KIM H S, KWON H J, KIM G E, et al. Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism[J]. Carcinogenesis, 2014, 35(7): 1 652-1 660.
[8] TOLAN I, RAGOOBIRSINGH D, MORRISON E Y S A. The effect of capsaicin on blood glucose, plasma insulin levels and insulin binding in dog models[J]. Phytotherapy Research, 2001, 15(5): 391-394.
[9] OKUMURA T, TSUKUI T, HOSOKAWA M, et al. Effect of caffeine and capsaicin on the blood glucose levels of obese/diabetic KK-Ay mice[J]. Journal of Oleo Science, 2012, 61(9): 515-523.
[10] AKIBA Y, KATO S, KATSUBE K, et al. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet β cells modulates insulin secretion in rats[J]. Biochemical and Biophysical Research Communications, 2004, 321(1): 219-225.
[11] KWON D Y, KIM Y S, RYU S Y, et al. Capsiate improves glucose metabolism by improving insulin sensitivity better than capsaicin in diabetic rats[J]. The Journal of Nutritional Biochemistry, 2013, 24(6): 1 078-1 085.
[12] ZHANG S, YOU Y, LIU J, et al. Hypoglycaemic effect of capsaicinoids via elevation of insulin level and inhibition of glucose absorption in streptozotocin-induced diabetic rats[J]. Journal of Functional Foods, 2018, 51: 94-103.
[13] KANG J H, TSUYOSHI G, LE NGOC H, et al. Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice[J]. Journal of Medicinal Food, 2011, 14(3): 310-315.
[14] LAGISETTY U, MOHAMMED H, RAMAIAH S. Effect of capsaicin on pharmacodynamic and pharmacokinetics of gliclazide in animal models with diabetes[J]. Pharmacognosy Research, 2018, 10(4): 437.
[15] ZHANG S, MA X, ZHANG L, et al. Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11): 2 323-2 330.
[16] AHUJA K D, ROBERTSON I K, GERAGHTY D P, et al. Effects of chili consumption on postprandial glucose, insulin, and energy metabolism[J]. The American Journal of Clinical Nutrition, 2006, 84(1): 63-69.
[17] YUAN L J, QIN Y, WANG L, et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns[J]. Clinical Nutrition, 2016, 35(2): 388-393.
[18] LEJEUNE M P G M, KOVACS E M R, WESTERTERP-PLANTENGA M S. Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects[J]. British Journal of Nutrition, 2003, 90(3): 651-659.
[19] BELZA A,JESSEN A B. Bioactive food stimulants of sympathetic activity: effect on 24 h energy expenditure and fat oxidation[J]. European Journal of Clinical Nutrition, 2005, 59(6): 733-741.
[20] YOSHIOKA M, LIM K, KIKUZATO S, et al. Effects of red-pepper diet on the energy metabolism in men[J]. Journal of Nutritional Science and Vitaminology, 1995, 41(6): 647-656.
[21] DÖMÖTÖR A, SZOLCSÁNYI J, MÓZSIK G. Capsaicin and glucose absorption and utilization in healthy human subjects[J]. European Journal of Pharmacology, 2006, 534(1): 280-283.
[22] 张世奇, 秦春青, 王倩倩, 等. 辣椒素对1型糖尿病大鼠糖代谢影响作用的研究[J]. 营养学报, 2017, 39(1): 76-80.
[23] JITRAPAKDEE S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis[J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(1): 33-45.
[24] KAMAGATE A, DONG H H. FoxO1 integrates insulin signaling to VLDL production[J]. Cell Cycle, 2008, 7(20): 3 162-3 170.
[25] SHIMABUKURO M, HIGA M, ZHOU Y-T, et al. Lipoapoptosis in beta-cells of obese prediabeticfa/fa rats role of serine palmitoyltransferase overexpression[J]. Journal of Biological Chemistry, 1998, 273(49): 32 487-32 490.
[26] UNNO M, NATA K, NOGUCHI N, et al. Production and characterization of reg knockout mice: reduced proliferation of pancreatic β-cells in reg knockout mice[J]. Diabetes, 2002, 51(Suppl 3): S478-S483.
[27] ISLAM M S, LOOTS T DU. Experimental rodent models of type 2 diabetes: a review[J]. Methods and Findings in Experimental and Clinical Pharmacology, 2009, 31(4): 249-261.
[28] 张世奇. 辣椒素对I型糖尿病大鼠糖代谢的影响及其降糖机制的研究[D]. 重庆: 西南大学, 2017.
[29] OKAMOTO H, TAKASAWA S. Recent advances in the okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (REG)-reg receptor system in β-cells[J]. Diabetes, 2002, 51(Suppl 3): S462-S473.
[30] BASSO L, ABOUSHOUSHA R, FAN C Y, et al. TRPV1 promotes opioid analgesia during inflammation[J]. Science Signaling, 2019, 12(575):1-14.
[31] DERBENEV A V, ZSOMBOK A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity[J]. Seminars in Immunopathology, 2016, 38(3): 397-406.
[32] 王沛坚. 激活TRPV1上调UCP2防治糖脂代谢紊乱致动脉粥样病变的机制研究[D]. 重庆: 第三军医大学, 2013.
[33] ZHONG B, MA S, WANG D H. TRPV1 mediates glucose-induced insulin secretion through releasing neuropeptides[J]. In Vivo, 2019, 33(5): 1 431-1 437.
[34] KARAM J B, CAI W, MOHAMED R, et al. TRPV1 neurons regulate β-cell function in a sex-dependent manner[J]. Molecular Metabolism, 2018, 18: 60-67.
[35] SUN J, PU Y, WANG P, et al. TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction[J]. Cardiovascular Diabetology, 2013, 12(1): 69.
[36] DIAZ-GARCIA C M, MORALES-LÁZARO S L, SÁNCHEZ-SOTO C, et al. Role for the TRPV1 channel in insulin secretion from pancreatic beta cells[J]. The Journal of Membrane Biology, 2014, 247(6): 479-491.
[37] AHRÉN B. Sensory nerves contribute to insulin secretion by glucagon-like peptide-1 in mice [J].American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2004,286(2):R269-R272.
[38] WANG P, YAN Z, ZHONG J, et al. Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis[J]. Diabetes, 2012, 61(8): 2 155-2 165.
[39] GAUTHIER B R, BRUN T, SARRET E J, et al. Oligonucleotide microarray analysis reveals PDX1 as an essential regulator of mitochondrial metabolism in rat islets[J]. Journal of Biological Chemistry, 2004, 279(30): 31 121-31 130.
[40] WATANABE T, KAWADA T, KUROSAWA M, et al. Adrenal sympathetic efferent nerve and catecholamine secretion excitation caused by capsaicin in rats[J]. American Journal of Physiology-Endocrinology and Metabolism, 1988, 255(1): E23-E27.
[41] UCHIDA K, DEZAKI K, YONESHIRO T, et al. Involvement of thermosensitive TRP channels in energy metabolism[J]. The Journal of Physiological Sciences, 2017, 67(5): 549-560.
[42] FESTA ANDREAS, D’AGOSTINO RALPH, HOWARD GEORGE, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome[J]. Circulation, 2000, 102(1): 42-47.
[43] MEHTA N N, MCGILLICUDDY F C, ANDERSON P D, et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans[J]. Diabetes, 2010, 59(1): 172-181.
[44] 刘小翠, 胡郁刚, 陈伟忠. 阿卡波糖对糖尿病患者肠道菌群的影响[J]. 黑龙江医学, 2017, 41(6): 541-542.
[45] BABOOTA R K, MURTAZA N, JAGTAP S, et al. Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice[J]. The Journal of Nutritional Biochemistry, 2014, 25(9): 893-902.
[46] EVERARD A, BELZER C, GEURTS L, et al. Cross-talk between akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proceedings of the National Academy of Sciences, 2013, 110(22): 9 066-9 071.
[47] 康超. 辣椒素通过调节肠道菌群发挥改善高脂膳食诱导小鼠肥胖体征//2017中国营养医学发展论坛暨全军营养医学大会论文汇编[C].呼和浩特: 中国营养学会, 2017: 28.
[48] 沈伟. 辣椒素对高脂饮食诱导肥胖小鼠肠道菌群的影响研究[D]. 重庆: 第三军医大学, 2017.
[49] 程亚娇, 王倩倩, 陆红佳, 等. 辣椒素对糖尿病大鼠肠道健康的影响[J]. 食品科学, 2015, 36(9): 154-159.
[50] CARLSSON P O, SANDLER S, JANSSON L. Influence of the neurotoxin capsaicin on rat pancreatic islets in culture, and on the pancreatic islet blood flow of rats[J]. European Journal of Pharmacology, 1996, 312(1): 75-81.
[1] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[2] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[3] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[4] 孟洋, 卢红梅, 杨双全, 章之柱, 陈莉, 刘兵, 王利萍. 铁皮石斛复配花茶制作工艺及其功能性研究[J]. 食品与发酵工业, 2021, 47(8): 170-179.
[5] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[6] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[7] 方静宇, 谢华凌, 冯思敏, 李振皓, 李明焱, 徐靖, 邵平. 石斛多糖改善糖尿病作用的影响因素及机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 237-244.
[8] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[9] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[10] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[11] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[12] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
[13] 刘韫滔, 黄伟民, 李诚, 刘爱平, 王体强, 唐婷婷. 木姜叶柯全发酵茶的活性成分及其降血糖活性研究[J]. 食品与发酵工业, 2020, 46(20): 53-60.
[14] 曾铁鑫, 姚志仁, 李豫, 朱开梅, 兰圆圆, 顾生玖. 巴戟天不同极性萃取相的抗氧化及降血糖活性[J]. 食品与发酵工业, 2020, 46(19): 192-196.
[15] 管玲娟, 曹丛丛, 屠飘涵, 成向荣. 缺铁对肠道免疫功能的影响及新型补铁剂的研究进展[J]. 食品与发酵工业, 2020, 46(19): 264-270.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn