Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (13): 196-202    DOI: 10.13995/j.cnki.11-1802/ts.023888
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
大黄鱼鱼卵磷脂乳化姜黄素工艺的研究
黄璐瑶1,2, 杜艳瑜1,2, 陆晓丹1,2, 梁鹏1,2,3*, 陈丽娇1,2,3, 程文健1,2,3
1(福建农林大学 食品科学学院,福建 福州,350002)
2(闽台特色海洋食品加工及营养健康教育部工程研究中心,福建 福州,350002)
3(福建省海洋生物技术重点实验室,福建 福州,350002)
Study on the technology of emulsifying curcumin in phospholipids oflarge yellow croaker roe
HUANG Luyao1,2, DU Yanyu1,2, LU Xiaodan1,2, LIANG Peng1,2,3*, CHEN Lijiao1,2,3, CHENG Wenjian1,2,3
1(College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
2(Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education,Fuzhou 350002, China)
3(Key Laboratory of Marine Biotechnology of Fujian province, Fuzhou 350002, China)
下载:  HTML   PDF (3404KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为明确大黄鱼鱼卵磷脂(large yellow croaker roe phospholipids, LYCRPLs)的乳化姜黄素特性,在单因素试验的基础上,以乳液粒径和稳定性为指标,通过响应面法优化了LYCRPLs对姜黄素的乳化工艺,并采用透射电镜对最优工艺下制备的乳液进行了初步表征,同时,考察了其贮藏稳定性。结果表明,LYCRPLs乳化姜黄素的最优工艺条件为:均质压力72.4 MPa、均质时间141 s、LYCRPLs添加量4.275%、油相比例12.89%,在此条件下所得的乳液粒径为(0.216±0.005 9) μm,乳液颗粒近似于球形,有着明显的水包油结构;为期4周的贮藏稳定性测试显示乳液在5和25 ℃下具有良好的稳定性,无分层和聚集等现象。研究结果为大黄鱼加工副产物的高值化利用提供了理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄璐瑶
杜艳瑜
陆晓丹
梁鹏
陈丽娇
程文健
关键词:  大黄鱼鱼卵  磷脂  姜黄素  乳液  响应面法  贮藏稳定性    
Abstract: In order to verify the emulsifying properties of large yellow croaker roe phospholipids (LYCRPLs), the curcumin was emulsified by LYCRPLs, and the preparation conditions were investigated in terms of emulsion particle size and stability. The emulsifying processing was optimized based on the single factor experiments via response surface methodology. Meanwhile, the emulsion was characterized by transmission electron microscope (TEM). Afterward, the emulsion stability was also investigated. The results showed that the optimum conditions were as follows: homogenization pressure was 724 bar, homogenization time was 141 s, LYCRPLs concentration was 4.275% and oil concentration was 12.89%. Under the above conditions, the emulsions particle size is (0.216±0.0059) μm. The emulsion particles are almost spherical and possess obvious oil-in-water structure. In addition, the LYCRPLs-curcumin emulsion is stable without delamination and aggregation at 5 and 25 ℃ after 4 weeks. The results are meaningful to make high-value utilization of processing by-products of large yellow croaker.
Key words:  large yellow croaker roe    phospholipids    curcumin    emulsions    response surface methodology    storage stability
收稿日期:  2020-03-08                出版日期:  2020-07-15      发布日期:  2020-08-04      期的出版日期:  2020-07-15
基金资助: 国家自然科学基金项目(31801465);国家重点研发计划(2018YFD0901001-04);福建农林大学杰出青年科研资助项目(xjq201808)
作者简介:  硕士研究生(梁鹏副教授为通讯作者,E-mail:liangpeng137@sina.com)
引用本文:    
黄璐瑶,杜艳瑜,陆晓丹,等. 大黄鱼鱼卵磷脂乳化姜黄素工艺的研究[J]. 食品与发酵工业, 2020, 46(13): 196-202.
HUANG Luyao,DU Yanyu,LU Xiaodan,et al. Study on the technology of emulsifying curcumin in phospholipids oflarge yellow croaker roe[J]. Food and Fermentation Industries, 2020, 46(13): 196-202.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023888  或          http://sf1970.cnif.cn/CN/Y2020/V46/I13/196
[1] HUI G, LIU W, FENG H, et al. Effects of chitosan combined with nisin treatment on storage quality of large yellow croaker (Pseudosciaena crocea) [J]. Food Chemistry, 2016, 203: 276-282.
[2] 农业农村部渔业渔政管理局. 中国渔业统计年鉴 [M]. 北京:中国农业出版社, 2019.
[3] LIANG P, LI R, SUN H, et al. Phospholipids composition and molecular species of large yellow croaker (Pseudosciaena crocea) roe[J]. Food Chemistry, 2018, 245: 806-811.
[4] CANSELL M. Marine phospholipids as dietary carriers of long-chain polyunsaturated fatty acids[J]. Lipid Technology, 2010, 22(10): 223-226.
[5] KOMAIKO J, SASTROSUBROTO A, MCCLEMENTS D J. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids[J]. Food Chemistry, 2016, 203: 331-339.
[6] DONSI F, WANG Y, HUANG Q. Freeze-thaw stability of lecithin and modified starch-based nanoemulsions[J]. Food Hydrocolloids, 2011, 25(5): 1 327-1 336.
[7] MCCLEMENTS D J, GUMUS C E. Natural emulsifiers-biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance[J]. Advances in Colloid and Interface Science, 2016,234:3-26.
[8] ANDREA A C, MAHMOOD A, ANWESHA S. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility[J]. Trends in Food Science & Technology, 2018, 71:155-169.
[9] CHUACHAROEN T, SABLIOV C M. Comparative effects of curcumin when delivered in a nanoemulsion or nanoparticle form for food applications: Study on stability and lipid oxidation inhibition[J]. LWT-Food Science and Technology, 2019, 113: 1-9.
[10] ZHANG W, CHEN C, SHI H, et al. Curcumin is a biologically active copper chelator with antitumor activity[J]. Phytomedicine International Journal of Phytotherapy & Phytopharmacology, 2016, 23(1): 1-8.
[11] EDWARDS R L, LUIS P B, VARUZZA P V, et al. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites[J]. Journal of Biological Chemistry, 2017, 292(52): 21 243-21 252.
[12] 牛静. 姜黄素纳米脂质体的制备及性质研究[D]. 南昌:南昌大学, 2015.
[13] GLADYS P, MONDRAGON C, ESPINOSA A. Developing curcumin nanoemulsions by high-intensity methods: Impact of ultrasonication and microfluidization parameters[J]. LWT-Food Science and Technology, 2019, 111: 291-300.
[14] ARTIGA-ARTIGAS M, LANJARI-PEREZ Y, MARTIN-BELLOSO O. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant[J]. Food Chemistry, 2018, 266: 466-474.
[15] SHEN P, ZHANG R, MCCLEMENTS D J, et al. Nanoemulsion-based delivery systems for testing nutraceutical efficacy using Caenorhabditis elegans: Demonstration of curcumin bioaccumulation and body-fat reduction[J]. Food Research International, 2019, 120: 157-166.
[16] FLOURY J, DESRUMAUX A, AXELOS M A V, et al. Effect of high pressure homogenisation on methylcellulose as food emulsifier[J]. Journal of Food Engineering, 2003, 58(3): 227-238.
[17] YUAN Y, GAO Y, MAO L, et al. Optimization of conditions for the preparation of β-carotene nanoemulsions using response surface methodology[J]. Food Chemistry, 2008, 107(3): 1 300-1 306.
[18] CICERO C P, ALLAN R F M, EBER A A M, et al. Development and optimization of pH-responsive PLGA-chitosan nanoparticles for triggered release of antimicrobials[J]. Food Chemistry, 2019, 295:671-679.
[19] MEHMOOD T. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology[J]. Food Chemistry, 2015, 183: 1-7.
[20] CHA Y, SHI X, WU F, et al. Improving the stability of oil-in-water emulsions by using mussel myofibrillar proteins and lecithin as emulsifiers and high-pressure homogenization[J]. Journal of Food Engineering, 2019, 258: 1-8.
[21] YUAN Y, GAO Y, MAO L, et al. Optimization of conditions for the preparation of β-carotene nanoemulsions using response surface methodology[J]. Food Chemistry, 2008, 107(3): 1 300-1 306.
[22] LI X, WANG L, WANG B. Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology[J]. Food Chemistry, 2017, 229: 479-486.
[23] LI P, LU W C. Effects of storage conditions on the physical stability of D-limonene nanoemulsion[J]. Food Hydrocolloids, 2016, 53: 218-224.
[24] STEPHEN Y, NITIN N. Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers[J]. Food Chemistry, 2019, 275: 1-7.
[1] 夏天航, 魏子淏, 马磊, 奚晓鸿, 宋琳, 徐雅男, 薛长湖. 负载虾青素的油凝胶纳米乳液的构建及体外消化研究[J]. 食品与发酵工业, 2021, 47(9): 1-7.
[2] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[3] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[4] 杨丽嫔, 杨倩, 王黎丽, 周瑞敏, 高成成, 刘琴. 铁棍山药黏液复合乳液保鲜鲜切马铃薯研究[J]. 食品与发酵工业, 2021, 47(8): 46-53.
[5] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[6] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[7] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[8] 宫璇, 齐筱莹, 赵志康, 逄昕雨, 郭梦雪, 叶张靖, 王友军, 李欣玉, 卢航. 卵磷脂及复合物的功能活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 295-299.
[9] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[10] 王伟佳, 高晓夏月, 刘爱国, 刘立增, 王鹏程, 杨毅. 不同热处理无乳糖酸奶与普通酸奶品质的比较[J]. 食品与发酵工业, 2021, 47(5): 99-104.
[11] 李琦, 曾凡坤, 华蓉, 王继飞. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业, 2021, 47(3): 128-134.
[12] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[13] 孙烨, 李英浩, WULANDARI, 吕丽爽, 张秋婷. 超声波预处理对玉米醇溶蛋白结构及其Pickering乳液稳定性的影响[J]. 食品与发酵工业, 2021, 47(1): 97-106.
[14] 代文婷, 王远, 邢丽杰, 吴宏, 康效宁, 吴洪斌, 王世萍, 代佳慧. 蟠桃-葡萄-黑枸杞复合饮料的配方优化[J]. 食品与发酵工业, 2021, 47(1): 172-179.
[15] 冯文旭, 吴殿辉, 蔡国林, 王璐, 翟秀超, 陆健. 精油纳米乳液对禾谷镰刀菌的抑制作用[J]. 食品与发酵工业, 2020, 46(9): 94-100.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn