Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (15): 162-168    DOI: 10.13995/j.cnki.11-1802/ts.024149
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
猕猴桃在冻干-真空微波联合干燥过程中的品质变化与水分分布特征
廉苗苗1, 黄略略2,*, 段续1,*
1(河南科技大学 食品与生物工程学院,河南 洛阳,471023)
2(深圳职业技术学院 应用化学与生物技术学院,广东 深圳,518055)
Quality change and moisture distribution of kiwifruit during FD-MVD
LIAN Miaomiao1, HUANG Luelue2, *, DUAN Xu1, *
1(College of Food and Bioengineering,Henan University of Science and Technology,Luoyang 471023, China)
2(School of Applied Chemistry and Biological Technology,Shenzhen Polytechnic,Shenzhen 518055,China)
下载:  HTML   PDF (3231KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以猕猴桃为原材料,利用冻干-真空微波联合干燥的方式,选取不同的水分转换点(分别为冻干4、6、8、10和12 h),结合猕猴桃在干燥过程中感官品质、复水比、体积密度、孔隙率等,分析猕猴桃片在干燥过程中的干燥特性、孔隙结构和水分分布特征,确定最优水分转换点。研究结果表明,不同水分含量下,猕猴桃片的干燥特性有很大差异,冻干时间越长,猕猴桃片的感官评分越高,复水比越大。冻干时间越长,真空微波时间越短,总的干燥时间越长。微观图片显示,猕猴桃中心和边缘部分的细胞大小有显著差异,影响了水分在中心和边缘部分的迁移。从感官品质的角度来看,冻干12 h是最佳的水分转换点。但从微观结构来看,冻干8 h样品具有最佳的细胞结构。水分转换点的选择不仅受样品质量的影响,还受总干燥时间和干燥能耗的影响。因此,冻干8 h是总干燥时间和质量(感官、微观结构)综合考虑后的最佳水分转换点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廉苗苗
黄略略
段续
关键词:  猕猴桃片  冷冻干燥  真空微波干燥  水分转换点  微观结构    
Abstract: In this study,kiwifruit was used as raw materials,and FD-MVD combined drying method was used to select different moisture conversion points (FD 4 h,FD 6 h,FD 8 h,FD 10 h,FD 12 h). By combing the following characters including sensory quality,rehydration ratio,bulk density,porosity of kiwifruit during drying,with the drying characteristics,pore structure and moisture distribution characteristics of kiwifruit slices during the drying process,the optimal moisture transfer point was determined. The results showed that the drying characteristics of kiwifruit slices varied greatly under different moisture levels. The sensory score and rehydration ratio increased with the increase of the FD time. Moreover,the MVD time decreased with the increase of the FD phase time,on the contrary,the total drying time increased. And the results of the micrographs indicated that the cell sizes of the central and peripheral parts of the kiwifruit were significantly different,which caused the different conversion of moisture in the central and peripheral parts. So,FD 12 h was the optimal moisture conversion point based on the sensory quality analysis. While,if the microstructure was considered as the prefer condition,the FD 8 h sample had the best cell structure. The choice of moisture conversion point was not only affected by the quality of the sample,but also by drying time and drying energy consumption. Therefore,FD 8 h was the optimal moisture conversion point when total drying time and quality (sensory,microstructure) were considered.
Key words:  kiwi slices    freeze drying    vacuum microwave drying    water-transfer point    microstructure
收稿日期:  2020-04-06      修回日期:  2020-04-20           出版日期:  2020-08-15      发布日期:  2020-08-15      期的出版日期:  2020-08-15
作者简介:  硕士研究生(黄略略副教授和段续教授为共同通讯作者,E-mail:huangll@szpt.edu.cn;duanxu_dx@163.com)
引用本文:    
廉苗苗,黄略略,段续. 猕猴桃在冻干-真空微波联合干燥过程中的品质变化与水分分布特征[J]. 食品与发酵工业, 2020, 46(15): 162-168.
LIAN Miaomiao,HUANG Luelue,DUAN Xu. Quality change and moisture distribution of kiwifruit during FD-MVD[J]. Food and Fermentation Industries, 2020, 46(15): 162-168.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024149  或          http://sf1970.cnif.cn/CN/Y2020/V46/I15/162
[1] HWANG J S, CHO C H, BAIK M Y, et al.Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.)[J]. Food Science and Biotechnology,2017,26(1): 221-228.
[2] MARA B,PAULA V,ANA S,et al.Effect of microwave heating on sensory characteristics of kiwifruit puree[J].Food and Bioprocess Technology,2012,5(8): 3 021-3 031.
[3] CONCHA-MEYER A A, D′IGNOTI V, SAEZ B,et al. Effect of storage on the physico-chemical and antioxidant properties of strawberry and kiwi leathers[J]. Journal of Food Science,2016,81(3):C569-C577.
[4] ORIKASA T, WU L, SHIINA T, et al.Drying characteristics of kiwifruit during hot air drying[J]. Journal of Food Engineering,2007,85(2):303-308.
[5] MASKAN M.Kinetics of colour change of kiwifruits during hot air and microwave drying[J]. Journal of Food Engineering,2001,48(2): 169-175.
[6] TIAN Y T,WU S Z,ZHAO Y T.Drying characteristics and processing parameters for microwave-vacuum drying of kiwifruit (Actinidia deliciosa) slices[J]. Journal of Food Processing & Preservation,2015,39(6): 2 620-2 629.
[7] CHANDRASEKARAN S, RAMANATHAN S, BASAK T.Microwave food processing—A review[J]. Food Research International,2013,52(1):243-261.
[8] KONE K Y, DRUON C, GNIMPIEBA E Z, et al.Power density control in microwave assisted air drying to improve quality of food[J]. Journal of Food Engineering,2013,119(4):750-757.
[9] CHENG W M, RAGHAVAN G S V, NGADI M, et al. Microwave power control strategies on the drying process I. Development and evaluation of new microwave drying system[J]. Journal of Food Engineering,2006,76(2):188-194.
[10] ZHU C H,GONG Q,LI J X.Research progress on comprehensive utilization of kiwifruit processing[J]. Preservation and Processing,2013,13(1):57-62.
[11] REYES A, EVSEEV A, MAHN A, et al.Effect of operating conditions in freeze-drying on the nutritional properties of blueberries[J]. International Journal of Food Sciences and Nutrition,2011,62(3):303-306.
[12] JIANG H, ZHANG M, MUJUMDAR A S, et al.Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying,freeze drying and microwave freeze drying[J]. Journal of the Science of Food and Agriculture,2014,94(9):1 827-1 834.
[13] ANTAL T.Comparative study of three drying methods: freeze,hot air-assisted freeze and infrared-assisted freeze modes[J]. Agronomy Research 2015,13(4): 863-878.
[14] ORAK H, AKTAS T, YAGAR H, et al.Effects of hot air and freeze drying methods on antioxidant activity,colour and some nutritional characteristics of strawberry tree (Arbutus unedo L.) fruit[J]. Food Science and Technology International,2012,18(4):391-402.
[15] CUI Z W, LI C Y, SONG C F, et al.Combined microwave-vacuum and freeze drying of carrot and apple chips[J]. Drying Technology,2008,26(12):1 517-1 523.
[16] ZHOU B, ZHANG M, FANG Z, et al.A combination of freeze drying and microwave vacuum drying of duck egg white protein powders[J]. Drying Technology,2014,32(15):1 840-1 847.
[17] 叶晓梦. 铁棍山药冻干-微波真空联合干燥工艺研究[D]. 石河子: 石河子大学,2014.
[18] JIANG N,LIU C,LI D, et al.Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: antioxidant properties,sensory quality,and energy consumption[J]. LWT - Food Sci Technol,2017,82: 216-226.
[19] PEI F,SHI Y,GAO X,et al.Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying[J]. Food Chem,2014,165: 547-554.
[20] PEI F,SHI Y,MARIGA A M,et al.Comparison of freeze-drying and freeze-drying combined with microwave vacuum drying methods on drying kinetics and rehydration characteristics of button mushroom (Agaricus bisporus) slices[J]. Food Bioprocess Technol,2014,7(6): 1 629-1 639.
[21] HUANG L L,QIAO F,FANG C F.Studies on the microstructure and quality of iron yam slices during combined freeze drying and microwave vacuum drying[J]. Journal of Food Process Pres,2015,39(6): 2 152-2 160.
[22] HUANG L L,ZHANG M,WANG L P,et al.Influence of combination drying methods on composition,texture,aroma and microstructure of apple slices[J]. LWT-Food Sci Technol,2012,47(1): 183-188.
[23] HUANG L L,ZHANG M,MUJUMDAR A S,et al.Comparison of four drying methods for re-structured mixed potato with apple slices[J]. Journal of Food Eng,2011,103(3): 279-284.
[24] ABBASI S,MOUSAVI S M,MOHEBBI M.Investigation of changes in physical properties and microstructure and mathematical modeling of shrinkage of onion during hot air drying[J]. Iranian Food Science and Technology Research Journal,2011,7(1): 92-98.
[25] 麦润萍,冯银杏,李汴生. 基于分形理论的预冻温度对冻干猕猴桃片干燥特性及品质的影响[J]. 食品与发酵工业,2018,44(12):155-160;165.
[26] HUANG L L,ZHANG M,MUJUMDAR A S,et al.Studies on decreasing energy consumption for a freeze-drying process of apple slices[J]. Dry Technol,2009,27(9): 938-946.
[27] VEGA-GALVEZ A,AH-HEN K,CHACANA M,et al.Effect of temperature and air velocity on drying kinetics,antioxidant capacity,total phenolic content,colour,texture and microstructure of apple (var. Granny Smith) slices[J]. Food Chem,2012,132(1): 51-59.
[28] MONTEIRO R L,LINK J V,TRIBUZI G,et al.Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices[J]. LWT-Food Sci and Technol,2018,96: 612-619.
[29] DUAN L L,DUAN X,REN G Y.Structural characteristics and texture during the microwave freeze drying process of Chinese yam chips[J]. Dry Technol,2020,38(7):928-939.
[30] DUAN X,HAN H,DENG R.Drying treatments on Chinese yam (Dioscorea spp.) prior to wet milling influence starch molecular structures and physicochemical properties[J]. Food Hydrocolloids,2020,102: 105 599.
[31] LIU Y H,ZENG Y,HU X Y,et al.Effect of ultrasonic power on water removal kinetics and moisture migration of kiwifruit slices during contact ultrasound intensified heat pump drying[J]. Food Bioprocess Technol,2020,13(6): 430-441.
[32] WITROWA-RAJCHERT D,RZACA M.Effect of drying method on the microstructure and physical properties of dried apples[J]. Dry Technol,2009,27(7): 903-909.
[1] 周葵, 洪雁, 梁尚云, 张雅媛, 游向荣, 李明娟, 卫萍, 王颖. 富硒大米粉预糊化及其复配代餐粉的研制[J]. 食品与发酵工业, 2021, 47(1): 186-192.
[2] 鲍诗晗, 李诗雯, 何玉英, 李佳琪, 王家琪, 兰天, 孙翔宇, 马婷婷. 烹饪方式对胡萝卜感官品质及营养素含量的影响[J]. 食品与发酵工业, 2020, 46(8): 149-156.
[3] 靳力为, 任广跃, 段续, 张迎敏. 超声波协同作用对真空冻干杏脱水及其品质的影响[J]. 食品与发酵工业, 2020, 46(6): 133-139.
[4] 黄山, 汪楠, 张月, 张甫生, 郑炯. 机械球磨处理对麻竹笋壳膳食纤维理化性质及结构的影响[J]. 食品与发酵工业, 2020, 46(5): 115-120.
[5] 汪楠, 黄山, 张月, 张甫生, 郑炯. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业, 2020, 46(4): 13-18.
[6] 林柳, 陶宁萍. 鱼头汤在体外仿生消化系统中的运动参数优化及消化特性研究[J]. 食品与发酵工业, 2020, 46(23): 92-98.
[7] 曹庆龙, 雷桥, 吴浩, 高文婧. 影响普鲁兰多糖气凝胶性能的工艺参数[J]. 食品与发酵工业, 2020, 46(23): 108-115.
[8] 廖超, 谢勇, 覃小丽, 叶正荣, 陈沁滨, 刘雄. 不同干燥方式对发芽青稞活性成分的影响[J]. 食品与发酵工业, 2020, 46(21): 139-146.
[9] 史胜娟, 刘丽莉, 张孟军, 郝威铭, 李媛媛, 杨晓盼. 微波真空冷冻干燥功率对鸡蛋清水分迁移及凝胶微观结构的影响[J]. 食品与发酵工业, 2020, 46(20): 15-20.
[10] 石慧, 吴燕燕, 胡晓, 陈胜军, 王悦齐, 荣辉, 杨少玲. 灰色关联度法综合评价卵形鲳鲹鱼片不同干制方法的品质差异[J]. 食品与发酵工业, 2020, 46(17): 166-173.
[11] 胡翔, 李洛欣, 罗堃, 冯建国, 郑淘, 曾艺琼, 辛济标, 孙俊宇, 郑慧, 杨勇. 两种淀粉类辅料对真空微波干燥蓝莓多酚含量及抗氧化能力的影响[J]. 食品与发酵工业, 2020, 46(16): 183-189.
[12] 王海鸥, 王前菊, 闫秋菊, 姜英, 周峰, 华春. 多元糖浸渍处理对真空冷冻干燥苹果片品质及微观孔隙结构的影响[J]. 食品与发酵工业, 2020, 46(16): 43-48.
[13] 张玉, 罗婧文, 马燕卿, 曾凡坤. 不同干燥技术对牡丹籽油微胶囊品质的影响[J]. 食品与发酵工业, 2020, 46(15): 128-133.
[14] 雷萌萌, 贾若南, 黄婉婧, 艾志录, 潘治利, 黄忠民. 冻结方式对油条中淀粉特性的影响[J]. 食品与发酵工业, 2020, 46(14): 60-64.
[15] 刘芳, 皇高峰, 王青, 张继冉, 徐淑霞, 张世敏, 吴坤. γ-聚谷氨酸对面条面团流变学特性和微观结构的影响[J]. 食品与发酵工业, 2020, 46(14): 85-90.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn