Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (8): 21-26    DOI: 10.13995/j.cnki.11-1802/ts.025444
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
不同食品酵母对葡萄糖的流加强度和热激压力的生理响应
陈敦武1, 刘翠翠1, 陈雄1, 代俊1, 王志1, 姚鹃2, 李沛2, 李欣1*
1(湖北工业大学 生物工程与食品学院,湖北 武汉,430068)
2(安琪酵母股份有限公司,湖北 宜昌,433003)
Physiological responses of different food yeasts to glucose feeding strength and heating stress
CHEN Dunwu1, LIU Cuicui1, CHEN Xiong1, DAI Jun1, WANG Zhi1, YAO Juan2, LI Pei2, LI Xin1*
1(College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China)
2(Angel Yeast Co., Ltd., Yichang 433003, China
下载:  HTML   PDF (1406KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物在发酵过程中往往会面临一系列诸如高温、高渗透压、乙醇等压力。该研究探究了4种食品酵母对葡萄糖的流加强度和热激压力的生理响应差异性。结果表明,Pichia kudriavzeviiSaccharomyces cerevisiae的生长几乎没有受到升温压力的影响。高速流加的葡萄糖和梯度升温抑制了Cyberlindnera fabianii的还原糖消耗,而对其他酵母没有影响。P.kudriavzeviiS.cerevisiae的胞内海藻糖表现为对葡萄糖的流加和低压力热激(35、37 ℃)高度敏感,C.fabianii的胞内海藻糖均表现出低敏感性,而Candida tropicalis的胞内海藻糖仅在严重压力下(>39 ℃)才开始积累。在所有酵母中,P.kudriavzevii的海藻糖含量在发酵调控后变化最显著,增长了3.7倍。此外,除C.fabianii外,高速流加的葡萄糖有利于P.kudriavzeviiS.cerevisiaeC.tropicalis乙醇的积累,特别是P.kudriavzevii的乙醇含量最高,达到48 g/L。该研究结果可以用于高耐受性菌株的筛选,为生物乙醇和酿造食品的应用提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈敦武
刘翠翠
陈雄
代俊
王志
姚鹃
李沛
李欣
关键词:  食品酵母  葡萄糖  热激  海藻糖  乙醇    
Abstract: Yeast cells often face a series of stress during the fermentation process, such as high temperature, high osmotic stress and ethanol. This work investigated the physiological responses of four food yeasts to glucose feeding strength and gradient heating stress. The results showed that the growth of Pichia kudriavzevii and Saccharomyces cerevisiae were hardly affected by gradient heating stress. High-speed feeding of glucose (400 mL/h) and gradient heating inhibited the reducing sugar consumption of Cyberlindner fabianii, but had no effect on other yeasts. The trehalose accumulation of P. kudriavzevii and S. cerevisiae were highly sensitive to glucose feeding and low stress heating (35, 37 ℃), C. fabianii showed low sensitivity to both glucose feeding and gradient heating stress, while Candida tropicalis intracellular trehalose only began to accumulate under severe heating stress (above 39 ℃). The trehalose content of P. kudriavzevii increased most significantly (3.7 times) after fermentation regulation among all yeasts. Meanwhile, other than C. fabianii, high-speed feeding of glucose was beneficial to ethanol accumulation in P. kudriavzevii, S. cerevisiae and C. tropicalis, especially P. kudriavzevii, which had the highest ethanol content of 48 g/L. These results could guide the selection of high tolerance strains and the application of bioethanol and fermented food.
Key words:  food yeasts    glucose    gradient heating    trehalose    ethanol
               出版日期:  2021-04-25      发布日期:  2021-05-20      期的出版日期:  2021-04-25
基金资助: 国家自然科学基金项目(31871789)
作者简介:  硕士研究生(李欣讲师为通讯作者,E-mail:51545530@qq.com)
引用本文:    
陈敦武,刘翠翠,陈雄,等. 不同食品酵母对葡萄糖的流加强度和热激压力的生理响应[J]. 食品与发酵工业, 2021, 47(8): 21-26.
CHEN Dunwu,LIU Cuicui,CHEN Xiong,et al. Physiological responses of different food yeasts to glucose feeding strength and heating stress[J]. Food and Fermentation Industries, 2021, 47(8): 21-26.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025444  或          http://sf1970.cnif.cn/CN/Y2021/V47/I8/21
[1] GIAEVER G, CHU A M, NI L, et al.Functional profiling of the Saccharomyces cerevisiae genome[J].Nature, 2002, 418(6 896):387-391.
[2] CHAMNIPA N, THANONKEO S, KLANRIT P, et al.The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production[J].Brazilian Journal of Microbiology, 2018, 49(2):378-391.
[3] 杜晶, 余培斌, 苏琪, 等.杨梅果酒酿造酵母的筛选、鉴定及耐受性研究[J].食品与发酵工业, 2015, 41(9):34-39.DU J, YU P B, SU Q, et al.Study on screening and identification of brewing yeasts for Chinese bayberry wine and its tolerance capacity[J].Food and Fermentation Industries, 2015, 41(9):34-39.
[4] RIJSWIJCK I M H V, MASTRIGT O V, PIJFFERS G, et al.Dynamic modelling of brewers' yeast and Cyberlindnera fabianii co-culture behaviour for steering fermentation performance[J].Food Microbiology, 2019, 83:113-121.
[5] LIU Q, LI X J, SUN C C, et al.Effects of mixed cultures of Candida tropicalis and aromatizing yeast in alcoholic fermentation on the quality of apple vinegar[J].3 Biotech, 2019, 9(4):128.
[6] PONGSANAT P, JARIVA C, WITTAYA T. High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil[J].Agriculture and Natural Resources, 2018, 52(6):511-518.
[7] BORBALA O H, DIANA N S, NIKOLETT K, et al.Effects of high sugar content on fermentation dynamics and some metabolites of wine-related yeast species Saccharomyces cerevisiae, S.uvarum and Starmerella bacillaris[J].Food Technology and Biotechnology, 2020, 58(1):76-83.
[8] QIU X L, ZHANG J, ZHOU J W, et al.Stress tolerance phenotype of industrial yeast:Industrial cases, cellular changes, and improvement strategies[J].Applied Microbiology and Biotechnology, 2019, 103(16):6 449-6 462.
[9] BAUER F F, PRETORIUS I S.Yeast stress response and fermentation efficiency:How to survive the making of wine-A review[J].South African Journal for Enology and Viticulture, 2000, 21:27-51.
[10] PAPINI M, NOOKAEW I, UHLEN M, et al.Scheffersomyces stipitis:A comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae[J].Microbial Cell Factories, 2012, 11(1):136.
[11] 张明芳, 王金晶, 钮成拓, 等.高温敏感型酵母的选育及其自溶物研究[J].食品与发酵工业, 2020, 46(1):50-55.ZHANG M F, WANG J J, NIU C T, et al.Screening of thermosensitive autolytic mutant yeasts and analysis of yeast autolysates[J].Food and Fermentation Industries, 2020, 46(1):50-55.
[12] SAINI P, BENIWAL A, VIJ S.Response and tolerance of yeast to changing environmental stress during ethanol fermentation[J].Process Biochemistry, 2018, 72:1-12.
[13] PAUL M J, PRIMAVESI L F, JHURREEA D, et al.Trehalose metabolism and signaling[J].Annual Review of Plant Biology, 2008, 59:417-441.
[14] ELEUTHERIO E C A, TREVISOL E T V, MESQUITA J F D, et al.Revisiting yeast trehalose metabolism[J].Current Genetics, 2015, 61(3):263-274.
[15] MANCINI R J, LEE J, MAYNARD H D.Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors[J].Journal of the American Chemical Society, 2012, 134(20):8 474-8 479.
[16] GONG P, LIN K, ZHANG J, et al.Enhancing spray drying tolerance of Lactobacillus bulgaricus by intracellular trehalose delivery via electroporation[J].Food Research International, 2019, 127:108 725.
[17] CHENG H J, SUN Y H, CHANG H W, et al.Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance[J].Bioprocess and Biosystems Engineering, 2020, 43(4):895-908.
[18] SUAREZ-MENDEZ C A, RAS C, WAHL S A.Metabolic adjustment upon repetitive substrate perturbations using dynamic 13C-tracing in yeast[J].Microbial Cell Factories, 2017, 16(1).DOI:10.1186/S12934-017-0778-6.
[19] 刘翠翠. 鲁氏酵母胞内高海藻糖发酵调控及代谢特征研究[D].武汉:湖北工业大学,2018.LIU C C.The regulation and metabolism characteristics of intracellular high trehalose fermentation in Zygosaccharomyces rouxii[D].Wuhan:Hubei University of Technology, 2018.
[20] LINDSAY H.A colorimetric estimation of reducing sugars in potatoes with 3, 5-dinitrosalicylic acid[J].Potato Research, 1973, 16(3):176-179.
[21] CHEN X, YAN M, XIE F L, et al.Biotin enhances salt tolerance of Torulopsis mogii[J].Annals of Microbiology, 2015, 65(1):393-398.
[22] SAKAGUCHI M.Diverse and common features of trehalases and their contributions to microbial trehalose metabolism[J].Applied Microbiology and Biotechnology, 2020, 104(5):1 837-1 847.
[23] MAGALHAES R S S, POPOVA B, BRAUS G H, et al.The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae:The roles of Ath1 and Agt1[J].FEMS Yeast Research, 2018(6):6.
[24] PONGCHAROEN P, CHAWNEUA J, TAWONG W.High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil[J].Agriculture and Natural Resources, 2018, 52(6):511-518.
[25] BABAZADEH R, LAHTVEE P J, ADIELS C B, et al.The yeast osmostress response is carbon source dependent[J].Scientific Reports, 2017, 7(990).DOI:10.1038/S41598-017-01141-4.
[26] MAGALHÃES R S S, LIMA K C D, ALMEIDA D S G D, et al.Trehalose-6-phosphate as a potential lead candidate for the development of Tps1 inhibitors:Insights from the trehalose biosynthesis pathway in diverse yeast species[J].Applied Biochemistry and Biotechnology,2016, 181(3):1-11.
[27] TARINEJAD A.Glucose signalling in Saccharomyces cerevisiae[J].Agricultural Communications, 2015, 3(2):7-15.
[28] FRANCOIS J, LUC P J.Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae[J].FEMS Microbiology Reviews, 2001, 25(1):125-145.
[29] GAO L M, LIU Y Q, SUN H, et al.Advances in mechanisms and modifications for rendering yeast thermotolerance[J].Journal of Bioence & Bioengineering, 2016, 121(6):599-606.
[30] AN M Z, TANG Y Q, MITSUMASU K, et al.Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase[J].Biotechnology Letters, 2011, 33:1 367-1 374.
[31] CHEN Z, ZHENG Z, YI C F, et al.Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process[J].RSC Advances, 2016,6(107).DOI:10.1038/C6RA19254H.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[3] 李泽洋, 伍时华, 龙秀锋, 吴军, 易弋. 米酒生香酵母的分离筛选鉴定及其性能研究[J]. 食品与发酵工业, 2021, 47(7): 43-50.
[4] 耿雪营, 郭藏, 米生权, 张艳贞, 郭俊霞, 陈文. 单宁的血糖调节活性功能研究进展[J]. 食品与发酵工业, 2021, 47(7): 301-306.
[5] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[6] 张倩, 谢正敏, 安明哲, 魏金萍, 叶华夏, 黄箭. 稳定碳同位素判别浓香型白酒的品牌[J]. 食品与发酵工业, 2021, 47(6): 234-240.
[7] 于洁, 徐勤茜, 李子院, 刘红艳, 郝再彬, 李海云. 虎杖内生真菌Aspergillus aculeatus HZ001产β-葡萄糖苷酶的酶学特性[J]. 食品与发酵工业, 2021, 47(3): 31-35.
[8] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[9] 张敏倩, 刘功良, 费永涛, 白卫东, 艾连中, 俞剑燊. 利用蜂蜜接合酵母合成海藻糖[J]. 食品与发酵工业, 2021, 47(3): 107-113.
[10] 盖昱梓, 孙静娴, 黄刚, 金刚. 苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 288-293.
[11] 张晓晓, 任剑星, 刘凯毅, 李潇, 董健. TOR1基因缺失对酿酒酵母耐受性的影响[J]. 食品与发酵工业, 2021, 47(2): 1-7.
[12] 石佳, 张红梅, 苏子杰, 徐方, 余翔, 冯艳丽. 添加葡萄糖及大豆源基质提高红曲monacolin K产量的研究[J]. 食品与发酵工业, 2021, 47(2): 182-187.
[13] 孙溪, 刘海晴, 张军, 范志华, 黄亮. 高表达MAL62基因对面包酵母耐高糖的影响[J]. 食品与发酵工业, 2021, 47(1): 8-13.
[14] 宫春宇, 刘羽婷, 单佳明, 徐硕, 邢悦. 玉米须多糖的乙醇沉淀分离及体内免疫调节作用研究[J]. 食品与发酵工业, 2021, 47(1): 143-147.
[15] 葛向阳, 何宏魁, 刘国英, 马金同, 宋书玉, 郭凯凯, 熊祎楠, 李安军, 周庆伍. 影响人体酒类乙醇代谢速度的关键风味物质[J]. 食品与发酵工业, 2021, 47(1): 160-164.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn