Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (8): 108-115    DOI: 10.13995/j.cnki.11-1802/ts.025587
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征
刘昕1, 张驰1, 薛艾莲1, 赵吉春1, 曾凯芳1,2, 明建1,2*
1(西南大学 食品科学学院,重庆,400715)
2(西南大学 食品贮藏与物流研究中心,重庆,400715)
Physicochemical properties and structure characterization of low-methoxy pectin from Premna microphylla Turcz extracted by ultrasound-enzyme treatment
LIU Xin1, ZHANG Chi1, XUE Ailian1, ZHAO Jichun1, ZENG Kaifang1,2, MING Jian1,2*
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China)
下载:  HTML   PDF (1930KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以豆腐柴为原料,采用超声-酶法提取低酯果胶,并探究其理化性质、结构特征、抗氧化活性以及流变特性。结果表明,超声-酶法提取的果胶得率达35.53%,相比传统酸法提取提高17.28%,属于低酯果胶(酯化度为16.80%),颜色呈现淡黄色,其总糖醛酸含量达到81.17%(质量分数)。通过高效液相色谱法对果胶分子质量进行测定,其重均分子质量(Mw)为27.24 kDa,数均分子质量(Mn)为15.30 kDa,Mw/Mn为1.78,表明豆腐柴果胶分子质量较低,且较为均一。单糖组成分析发现,半乳糖醛酸、葡萄糖、鼠李糖、半乳糖等是主要组分,其结构线性度较低,主要结构为短侧链的RG-Ⅰ型。红外光谱扫描特征峰证实其含有果胶成分;扫描电镜显示其表面粗糙,含有较多孔隙结构;X射线衍射表明豆腐柴果胶具有一定的结晶度;差示量热扫描、热重分析显示豆腐柴果胶在259.3 ℃发生降解,热稳定性较好;流变学分析结果表明不同浓度豆腐柴果胶溶液均出现剪切变稀现象,为非牛顿流体,10 g/L的果胶溶液储能模量(G')高于损耗模量(G″),表现出较好的弹性;抗氧化活性测定显示豆腐柴果胶清除DPPH自由基、ABTS阳离子自由基的IC50分别为0.37、0.34 g/L。研究结果为豆腐柴低酯果胶的开发及综合利用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘昕
张驰
薛艾莲
赵吉春
曾凯芳
明建
关键词:  超声    豆腐柴  果胶  结构    
Abstract: The low-methoxy pectin was extracted from Premna microphylla Turcz with ultrasound-enzyme method. Its physicochemical properties, structural characteristics, antioxidant activity and rheological properties were explored. The results showed that the yield of pectin extracted by ultrasonic-enzyme method was 35.53%, which was 17.28% higher than that of the traditional acid extraction method. The pectin obtained belonged to low-ester pectin (the degree of esterification was 16.80%). The color of the pectin was pale yellow, and its galacturonic acid content was 81.17%. Molecular weight of the pectin was determined by HPLC. The weight average molecular weight (Mw) was 27.24 kDa, the number average molecular weight (Mn) was 15.30 kDa, and the Mw/Mn was 1.78, which indicated that the molecular weight of P. microphylla pectin was relatively low and uniform. D-Galacturonic acid, glucose, rhamnose and galactose were the main monosaccharide components of the pectin. Its structural linearity was low and its main structure was RG-I Type with short side chain, which were found through the analysis of monosaccharide composition. Characteristic peaks of Fourier transform infrared spectrometer confirmed that it contained pectin. SEM showed that the surface was rough and contained a lot of pore structure. X-ray diffraction analysis showed that the pectin had a certain degree of crystallinity. Differential scanning calorimetry and thermogravimetric analysis results showed that pectin had good thermal stability, and the pectin was degraded at 259.3 ℃. Rheological results showed that pectin extracted from P. microphylla presented non-Newtonian shear-thinning behavior. G' of 10 g/L pectin solution was higher than G″, showing better elasticity. IC50 of DPPH and ABTS free radicals were 0.37 and 0.34 g/L respectively in the antioxidant activity test. This research results provide a theoretical basis for the development and comprehensive utilization of low-ester pectin from P. microphylla.
Key words:  ultrasound    enzyme    Premna microphylla Turcz    pectin    structure
               出版日期:  2021-04-25      发布日期:  2021-05-20      期的出版日期:  2021-04-25
基金资助: 重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0407)
作者简介:  硕士研究生(明建教授为通讯作者, E-mail:mingjian1972@163.com)
引用本文:    
刘昕,张驰,薛艾莲,等. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
LIU Xin,ZHANG Chi,XUE Ailian,et al. Physicochemical properties and structure characterization of low-methoxy pectin from Premna microphylla Turcz extracted by ultrasound-enzyme treatment[J]. Food and Fermentation Industries, 2021, 47(8): 108-115.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025587  或          http://sf1970.cnif.cn/CN/Y2021/V47/I8/108
[1] 李刚凤, 罗家兴, 李洪艳,等.豆腐柴叶营养成分分析与评价[J].食品研究与开发, 2019, 40(21):62-65.LI G F, LUO J X, LI H Y, et al.Analysis and evaluation on nutritional composition of Premna microphylla Turcz leaves[J].Food Research and Development, 2019, 40(21):62-65.
[2] 宁海凤. 豆腐柴叶中果胶的提取工艺及其性质研究[D].无锡:江南大学, 2010.NING H F.Study on extraction technology and properties of pectin from leaves of Premna microphylla Turcz[D].Wuxi:Jiangnan University, 2010.
[3] WANG W J, MA X B, XU Y T, et al.Ultrasound-assisted heating extraction of pectin from grapefruit peel:Optimization and comparison with the conventional method[J].Food Chemistry, 2015, 178:106-114.
[4] ADETUNJI L R, ADEKUNLE A, ORSAT V, et al.Advances in the pectin production process using novel extraction techniques:A review[J].Food Hydrocolloids, 2017, 62:239-250.
[5] ZOUAMBIA Y, ETTOUMI K Y, KREA M, et al.A new approach for pectin extraction:Electromagnetic induction heating[J].Arabian Journal of Chemistry, 2017, 10(4):480-487.
[6] 唐宇, 张小利, 何晓琴, 等.体外模拟胃肠消化过程中蒸汽爆破处理的苦荞麸皮的抗氧化及抗增殖活性[J].食品与发酵工业, 2019, 45(3):107-115.TANG Y, ZHANG X L, HE X Q, et al.Antioxidantive and anti-proliferative activities of steam exploded tartary buckwheat bran during simulated gastrointestinal digestion in vitro[J].Food and Fermentation Industries, 2019, 45(3):107-115.
[7] 陈光静. 方竹笋的加工废笋渣中多糖的分离纯化和结构解析及其生物活性研究[D].重庆:西南大学, 2019.CHEN G J.Isolation, purification, structural identification and bioactivity of polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products[D].Chongqing:Southwest University, 2019.
[8] 袁敏. 南酸枣果胶的提取及性质的研究[D].广州:华南理工大学, 2016.YUAN M.Study on extraction and characterization of Choerospondias axillaries pectin[D].Guangzhou:South China University of Technology, 2016.
[9] 刘瑶, 王新然, 赵悦, 等.荞麦皮多糖组成及其抗氧化特性分析[J].食品与发酵工业, 2019, 45(13):134-140.LIU Y, WANG X R, ZHAO Y, et al.Composition and antioxidant activity of polysaccharides extracted from buckwheat husk[J].Food and Fermentation Industries, 2019, 45(13):134-140.
[10] 杨文丽, 杨波, 杨光.纳豆多糖的理化性质及结构分析[J].食品与发酵工业, 2019, 45(20):132-137.YANG W L, YANG B, YANG G.Physicochemical properties and structural analysis of natto polysaccharides[J].Food and Fermentation Industries, 2019, 45(20):132-137.
[11] LIEW S Q, TEOH W H, YUSOFF R, et al.Comparisons of process intensifying methods in the extraction of pectin from pomelo peel[J].Chemical Engineering and Processing-Process Intensification, 2019, 143:107 586.
[12] OGUTU F O, MU T H.Ultrasonic degradation of sweet potato pectin and its antioxidant activity[J].Ultrasonics Sonochemistry, 2017, 38:726-734.
[13] EINHORN-STOLL U, KUNZEK H, DONGOWSKI G.Thermal analysis of chemically and mechanically modified pectins[J].Food Hydrocolloids, 2007, 21(7):1 101-1 112.
[14] CHEN X W, QI Y J, ZHU C H, et al.Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin[J].International Journal of Biological Macromolecules, 2019, 131(5):273-281.
[15] KAZEMI M, KHODAIYAN F, LABBAFI M, et al.Pistachio green hull pectin:Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties[J].Food Chemistry, 2019, 271:663-672.
[16] JIANG Y, DU J H, ZHANG L G, et al.Properties of pectin extracted from fermented and steeped hawthorn wine pomace:A comparison[J].Carbohydrate Polymers, 2018, 197:174-182.
[17] ROJAS R, ALVAREZ-PÉREZ O B, CONTRERAS-ESQUIVEL J C, et al.Valorisation of mango peels:Extraction of pectin and antioxidant and antifungal polyphenols[J].Waste and Biomass Valorization, 2020, 11(1):89-98.
[18] LU J K, LI J J, JIN R C, et al.Extraction and characterization of pectin from Premna microphylla Turcz leaves[J].International Journal of Biological Macromolecules, 2019, 131:323-328.
[19] SCHIEBER A, HILT P, STREKER P, et al.A new process for the combined recovery of pectin and phenolic compounds from apple pomace[J].Innovative Food Science & Emerging Technologies, 2003, 4(1):99-107.
[20] BERARDINI N, KNÖDLER M, SCHIEBER A, et al.Utilization of mango peels as a source of pectin and polyphenolics[J].Innovative Food Science & Emerging Technologies, 2005, 6(4):442-452.
[21] PAN M K, ZHOU F F, SHI R H, et al.Characterizations of a pectin extracted from Premna microphylla Turcz and its cold gelation with whey protein concentrate at different pHs[J].International Journal of Biological Macromolecules, 2019, 139:818-826.
[22] WANG M M, HUANG B H, FAN C H, et al.Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid[J].International Journal of Biological Macromolecules, 2016, 91:794-803.
[23] ZHANG L F, YE X Q, DING T, et al.Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin[J].Ultrasonics Sonochemistry, 2013, 20(1):222-231.
[24] WANG B, DIAO Q Y, ZHANG Z Y, et al.Antitumor activity of bee pollen polysaccharides from Rosa rugosa[J].Molecular Medicine Reports, 2013, 7(5):1 555-1 558.
[25] 任佳琦, 刘昕, 雷琳, 等.苹果中有机酸-果胶复合体系的理化特性及稳定性[J].食品与发酵工业, 2019, 46(12):29-36.REN J Q, LIU X, LEI L, et al.Physicochemical properties and stability of organic acids/pectin composite system in apple[J].Food and Fermentation Industries, 2019, 46(12):29-36.
[26] RAHMANI Z, KHODAIYAN F, KAZEMI M, et al.Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel[J].International Journal of Biological Macromolecules, 2020, 147:1 107-1 115.
[27] BAUM A, DOMINIAK M, VIDAL-MELGOSA S, et al.Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis[J].Food and Bioprocess Technology, 2017, 10(1):143-154.
[28] SHIVAMATHI C S, MOORTHY I G, KUMAR R V, et al.Optimization of ultrasound assisted extraction of pectin from custard apple peel:Potential and new source[J].Carbohydrate Polymers, 2019, 225:115 240.
[29] CHEN R Z, JIN C G, TONG Z G, et al.Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels[J].Carbohydrate Polymers, 2016, 136:187-197.
[30] WANG X, CHEN Q R, LYU X.Pectin extracted from apple pomace and citrus peel by subcritical water[J].Food Hydrocolloids, 2014, 38:129-137.
[31] 王文骏. 柑橘皮果胶超声辅助提取的作用机制研究[D].杭州:浙江大学, 2018.WANG W J.The research on the mechanism of ultrasound-assisted extraction of pectin from citrus peel[D].Hangzhou:Zhejiang University, 2018.
[32] JIANG Y, XU Y H, LI F, et al.Pectin extracted from persimmon peel:A physicochemical characterization and emulsifying properties evaluation[J].Food Hydrocolloids, 2020, 101:105 561.
[33] KAZEMI M, KHODAIYAN F, HOSSEINI S S.Eggplant peel as a high potential source of high methylated pectin:Ultrasonic extraction optimization and characterization[J].LWT - Food Science and Technology, 2019, 105:182-189.
[34] XU Y T, ZHANG L F, BAILINA Y, et al.Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel[J].Journal of Food Engineering, 2014, 126:72-81.
[35] HUA X, WANG K, YANG R J, et al.Rheological properties of natural low-methoxyl pectin extracted from sunflower head[J].Food Hydrocolloids, 2015, 44:122-128.
[36] RODSAMRAN P, SOTHORNVIT R.Microwave heating extraction of pectin from lime peel:Characterization and properties compared with the conventional heating method[J].Food Chemistry, 2019, 278:364-372.
[37] LIRA-ORTIZ A L, RESÉNDIZ-VEGA F, ROS-LEAL E, et al.Pectins from waste of prickly pear fruits (Opuntia albicarpa Scheinvar ‘Reyna’):Chemical and rheological properties[J].Food Hydrocolloids, 2014, 37:93-99.
[38] COLODEL C, VRIESMANN L C, DE OLIVEIRA PETKOWICZ C L.Rheological characterization of a pectin extracted from ponkan (Citrus reticulata blanco cv. ponkan) peel[J].Food Hydrocolloids, 2019, 94:326-332.
[39] CHEN Y, ZHANG J G, SUN H J, et al.Pectin from Abelmoschus esculentus:Optimization of extraction and rheological properties[J].International Journal of Biological Macromolecules, 2014, 70:498-505.
[40] 任剑豪, 甘增鹏, 詹浩通, 等.荸荠淀粉糊流变性质的研究[J].中国粮油学报, 2019, 34(11):29-37.REN J H, GAN Z P, ZHAN H T, et al.et al.Rheological properties of chufa starch paste[J].Journal of the Chinese Cereals and Oils Association, 2019, 34(11):29-37.
[41] 巫永华, 陆文静, 刘梦虎, 等.响应面优化超声波辅助双水相提取牛蒡多糖及抗氧化分析[J].食品与发酵工业, 2020, 46(5):215-223.WU Y H, LU W J, LIU M H, et al.Optimization of ultrasonic-assisted aqueous two-phase extraction of burdock polysaccharide by response surface design and its antioxidant activities[J].Food and Fermentation Industries, 2020, 46(5):215-223.
[42] 郑恒光, 沈恒胜, 杨道富, 等.杏鲍菇菇头多糖的结构鉴定及生物活性评价[J].食品科学, 2019, 40(22):7-13.ZHENG H G, SHEN H S, YANG D F, et al.Structural characterization and antitumor activity of crude polysaccharide extracted from the stalk residue of Pleurotus eryngii[J].Food Science, 2019, 40(22):7-13.
[43] MZOUGHI Z, ABDELHAMID A, RIHOUEY C, et al.Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves:Characterization, antioxidant, anti-inflammatory and analgesic activities[J].Carbohydrate Polymers, 2018, 185:127-137.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 孙杨, 王丽君, 杨套伟, 付维来, 易敢峰, 饶志明. 氧甲基转移酶编码基因ploy (A)加尾促进粘质沙雷氏菌合成灵菌红素能力研究[J]. 食品与发酵工业, 2021, 47(9): 49-56.
[3] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[4] 李童, 钱斌, 周建弟, 徐岩, 王栋. 中性脲酶固定化降解黄酒中尿素[J]. 食品与发酵工业, 2021, 47(9): 70-75.
[5] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[6] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[7] 李云嵌, 杨曦, 刘江, 吴娟, 王振兴, 张雪春. 超声波辅助碱法提取美藤果分离蛋白及其加工性质研究[J]. 食品与发酵工业, 2021, 47(9): 128-135.
[8] 蔡燕, 田丹, 严鑫, 李百裕, 李宇杰, 于丽娟, 吴锦明. 一步法快速从脱脂豆粉中三相分离脂肪氧合酶[J]. 食品与发酵工业, 2021, 47(9): 149-153.
[9] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[10] 李晨晨, 李梦丽, 张涛. 人乳寡糖的研究进展[J]. 食品与发酵工业, 2021, 47(9): 284-292.
[11] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[12] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[13] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[14] 杨丽嫔, 杨倩, 王黎丽, 周瑞敏, 高成成, 刘琴. 铁棍山药黏液复合乳液保鲜鲜切马铃薯研究[J]. 食品与发酵工业, 2021, 47(8): 46-53.
[15] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn