Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 57-63    DOI: 10.13995/j.cnki.11-1802/ts.030699
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
不同贮藏温度下巴氏杀菌乳细菌多样性研究
郑家铭1, 洪意1, 吴瑜凡2, 方太松1, 申进玲3, 董庆利1, 王翔1*
1(上海理工大学 健康科学与工程学院,上海,200093)
2(华东理工大学 化学与分子工程学院分析测试中心,上海,200237)
3(上海海关动植物与食品检验检疫技术中心,上海,200135)
Bacterial diversity in pasteurized milk under different temperatures
ZHENG Jiaming1, HONG Yi1, WU Yufan2, FANG Taisong1, SHEN Jinling3, DONG Qingli1, WANG Xiang1*
1(School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
2(School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China)
3(Technology Center for Animal Plant and Food Inspection and Qurantine, Shanghai Customs, Shanghai 200135, China)
下载:  HTML  PDF (4835KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Illumina MiSeq高通量扩增子测序技术,对巴氏杀菌乳在10、15、25 ℃贮藏温度下细菌多样性进行分析。研究贮藏过程中巴氏杀菌乳中细菌群落结构演替,并比较不同贮藏温度下巴氏杀菌乳中细菌的群落组成及相关预测功能的差异。结果表明,3个温度条件下巴氏杀菌乳在贮藏前期,多样性指数基本恒定,可培养的菌落总数维持在2~3 lgCFU/mL,此阶段优势菌属为不动杆菌属(Acinetobacter)和肠杆菌属(Enterococcus);随着贮藏时间的延长,细菌多样性下降,25 ℃贮存下降最快,10 ℃最慢,芽胞杆菌属(Bacillus)逐渐成为优势菌属,与此同时,菌落总数也在快速增加。Tax4Fun法分析代谢功能图谱发现在细胞新陈代谢、遗传信息加工和环境信息处理等丰度较高,且在贮藏过程中均有不同程度的变化。各项结果表明,巴氏杀菌乳在温度失控条件下贮存货架期快速缩短,芽胞杆菌属可能是导致腐败的主要原因。该研究可为巴氏杀菌乳贮藏过程中细菌群落变化研究及品质控制提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑家铭
洪意
吴瑜凡
方太松
申进玲
董庆利
王翔
关键词:  巴氏杀菌乳  贮藏温度  高通量测序技术  细菌多样性  功能预测    
Abstract: In this study, Illumina MiSeq amplicon sequencing was used to analyze the bacterial diversity in pasteurized milk stored at 10, 15 and 25 ℃. The shift of bacterial community in pasteurized milk during storage was studied, the bacterial community structure and predicted functions were compared. The results showed that the diversity index of bacterial community was almost constant in the early storage period under different temperatures, and the aerobic bacterial count maintained between 2-3 lgCFU/mL. During this period, Acinetobacter and Enterobacter were the dominant bacterial genera. With the extension of storage, the bacterial diversity showed a significant decreasing trend under 25 ℃, while that of 10 ℃ decreased slowly. The abundance of Bacillus increased and became the dominant genus. At the same time, the aerobic bacterial count increased rapidly. The high abundance of metabolic functions such as cell metabolism, genetic information processing and environmental information processing were detected by Tax4Fun method, all the levels changed to varying degrees during storage. The results showed that the shelf life of pasteurized milk shortened quickly under uncontrolled temperature condition, and Bacillus may be the main reason for spoilage. The results provide information for the study of bacterial community shift and quality control of pasteurized milk.
Key words:  pasteurized milk    storage temperature    high throughput sequencing    bacterial diversity    function prediction
收稿日期:  2022-01-10      修回日期:  2022-01-19           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 国家自然科学基金青年基金(31801455);上海市农委2021年度科技兴农项目(2021-02-08-00-12-F00782)
作者简介:  硕士研究生(王翔副教授为通信作者,E-mail:xiang.wang@usst.edu.cn)
引用本文:    
郑家铭,洪意,吴瑜凡,等. 不同贮藏温度下巴氏杀菌乳细菌多样性研究[J]. 食品与发酵工业, 2022, 48(20): 57-63.
郑家铭,洪意,吴瑜凡,et al. Bacterial diversity in pasteurized milk under different temperatures[J]. Food and Fermentation Industries, 2022, 48(20): 57-63.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030699  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/57
[1] BARBANO D M, MA Y, SANTOS M V.Influence of raw milk quality on fluid milk shelf life[J].Journal of Dairy Science, 2006, 89:E15-E19.
[2] 王慧, 杨永龙, 张杰, 等.浅析巴氏杀菌奶在中国的发展前景[J].饮料工业, 2010, 13(11):4-7.WANG H, YANG Y L, ZHANG J, et al.Analysis on prospects of pasteurized milk in China[J].Beverage Industry, 2010, 13(11):4-7.
[3] 杨茜茜. 消费者对进口牛奶的偏好和支付意愿研究[D].无锡:江南大学, 2021.YANG Q Q.Research on consumers' preference and willingness to pay for imported milk[D].Wuxi:Jiangnan University, 2021.
[4] BURGESS S A, LINDSAY D, FLINT S H.Thermophilic bacilli and their importance in dairy processing[J].International Journal of Food Microbiology, 2010, 144(2):215-225.
[5] ELWELL M W, BARBANO D M.Use of microfiltration to improve fluid milk quality[J].Journal of Dairy Science, 2006, 89:E20-E30.
[6] VITHANAGE N R, DISSANAYAKE M, BOLGE G, et al.Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential[J].International Dairy Journal, 2016, 57:80-90.
[7] KABLE M E, SRISENGFA Y, LAIRD M, et al.The core and seasonal microbiota of raw bovine milk in tanker trucks and the impact of transfer to a milk processing facility[J].mBio, 2016, 7(4):e00836-e00816.
[8] DERAKHSHANI H, TUN H M, KHAFIPOUR E.An extended single-index multiplexed 16S rRNA sequencing for microbial community analysis on MiSeq illumina platforms[J].Journal of Basic Microbiology, 2016, 56(3):321-326.
[9] 闫艳华, 曹慧慧, 董李学, 等.高通量测序技术对不同采奶环节细菌多样性的研究[J].中国乳品工业, 2021, 49(3):24-28.YAN Y H, CAO H H, DONG L X, et al.Study on the diversity of bacteria in different milk collection stages by high throughput sequencing technology[J].China Dairy Industry, 2021, 49(3):24-28.
[10] PORCELLATO D, ASPHOLM M, SKEIE S B, et al.Microbial diversity of consumption milk during processing and storage[J].International Journal of Food Microbiology, 2018, 266:21-30.
[11] 郑钰倩, 喻勇新, 赵海霞, 等.上海市市售低温酸奶中细菌多样性的初步研究[J].食品与发酵工业, 2022,48(6):58-63.ZHENG Y Q, YU Y X, ZHAO H X, et al.Preliminary study on bacterial diversity in low-temperature yogurt from Shanghai supermarket[J].Food and Fermentation Industries, 2022,48(6):58-63.
[12] MAGOČ T, SALZBERG S L.FLASH:Fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics, 2011, 27(21):2 957-2 963.
[13] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods, 2010, 7(5):335-336.
[14] OLSON N D, SHAH N, KANCHERLA J, et al.Metagenome Features:An R package for working with 16S rRNA reference databases and marker-gene survey feature data[J].Bioinformatics, 2019, 35(19):3 870-3 872.
[15] ASSHAUER K P, WEMHEUER B, DANIEL R, et al.Tax4Fun:Predicting functional profiles from metagenomic 16S rRNA data[J].Bioinformatics, 2015, 31(17):2 882-2 884.
[16] 丁瑞雪, 耿丽娟, 张铁华, 等.基于下一代测序技术分析巴氏杀菌乳中残留细菌在贮藏期间的动态变化[J].食品科学, 2019, 40(14):77-83.DING R X, GENG L J, ZHANG T H, et al.Dynamic analysis of changes in residual bacteria in pasteurized milk during storage based on next-generation sequencing[J].Food Science, 2019, 40(14):77-83.
[17] 杨雪. 巴氏奶腐败过程中微生物群落及腐败微生物溯源[D].昆明:昆明理工大学, 2018.YANG X.Microorganism during pasteurized milk corruption process and spoilage microorganism origin[D].Kunming:Kunming University of Science and Technology, 2018.
[18] 布仁其其格, 高雅罕, 任秀娟, 等.不同发酵时期酸马奶细菌群落结构[J].食品科学, 2016, 37(11):108-113.BURENQIQIGE, GAO Y H, REN X J, et al.Dynamic changes of bacteria community structure during koumiss fermentation[J].Food Science, 2016, 37(11):108-113.
[19] HE H F, DONG J, LEE C N, et al.Molecular analysis of spoilage-related bacteria in pasteurized milk during refrigeration by PCR and denaturing gradient gel electrophoresis[J].Journal of Food Protection, 2009, 72(3):572-577.
[20] MUGADZA D T, BUYS E.Bacillus and Paenibacillus species associated with extended shelf life milk during processing and storage[J].International Journal of Dairy Technology, 2018, 71(2):301-308.
[21] DOUGHARI H J, NDAKIDEMI P A, HUMAN I S, et al.The ecology, biology and pathogenesis of Acinetobacter spp.:An overview[J].Microbes and Environments, 2011, 26(2):101-112.
[22] RASOLOFO E A, ST-GELAIS D, LAPOINTE G, et al.Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk[J].International Journal of Food Microbiology, 2010, 138(1-2):108-118.
[23] LI F, HUNT K, BUGGY A K, et al.The effects of sequential heat treatment on microbial reduction and spore inactivation during milk processing[J].International Dairy Journal, 2020, 104:104648.
[24] 李引强, 朱宝利, 吴俊, 等.16S rRNA的分子生物学方法分析牛奶中的细菌菌群[J].食品科学, 2013, 34(20):255-260.LI Y Q,ZHU B L,WU J, et al.Molecular biological analysis of bacterial community in milk based on 16S rRNA gene[J].Food Science, 2013, 34(20):255-260.
[25] CHI F M, TAN Z K, GU X D, et al.Bacterial community diversity of yak milk dreg collected from Nyingchi region of Tibet, China[J].LWT-Food Science and Technology, 2021, 145:111308.
[26] 李蕊, 王一然, 刘丽云, 等.贮存温度对巴氏杀菌乳中游离氨基酸组成及品质的影响[J].中国乳品工业, 2020, 48(1):8-13.LI R, WANG Y R, LIU L Y, et al.Effects of storage temperature on the composition and flavor of free amino acids in pasteurized milk[J].China Dairy Industry, 2020, 48(1):8-13.
[27] NIYAZBEKOVA Z, YAO X T, LIU M J, et al.Compositional and functional comparisons of the microbiota in the colostrum and mature milk of dairy goats[J].Animals, 2020, 10(11):1 955.
[28] YANG C C, ZHAO F Y, HOU Q C, et al.PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions[J].Journal of Dairy Science, 2020, 103(2):1 238-1 249.
[1] 黎婷玉, 陈瑶瑶, 张彦, 熊建文, 郭壮, 王玉荣. 南宁地区酸笋细菌类群分析[J]. 食品与发酵工业, 2022, 48(9): 71-76.
[2] 郑钰倩, 喻勇新, 赵海霞, 唐笑, 张华青, 陈姝. 上海市市售低温酸奶中细菌多样性的初步研究[J]. 食品与发酵工业, 2022, 48(6): 58-63.
[3] 谢丹, 吴成, 程平言, 黄魏, 毕远林, 张健, 李岭卓, 汪地强, 尤小龙, 胡峰. 应用单分子实时测序技术解析酱香型白酒高温大曲制作过程细菌多样性[J]. 食品与发酵工业, 2022, 48(19): 58-64.
[4] 王子涵, 林青, 刘钰洁, 秦新政, 李月, 娄恺, 袁华伟, 霍向东. 赛里木酸奶细菌多样性及挥发性风味物质成分分析[J]. 食品与发酵工业, 2022, 48(18): 265-270.
[5] 乌有娜, 王玉荣, 洋洋, 双全. 酸粥发酵过程中微生物群落演替及理化特性变化研究[J]. 食品与发酵工业, 2022, 48(17): 116-121.
[6] 席啦, 向凡舒, 张彦, 张海波, 郭壮. 天门地区鲊广椒中细菌群落结构及乳酸菌类群研究[J]. 食品与发酵工业, 2022, 48(17): 122-128.
[7] 曹思源, 李保祥, 何悦, 刘敏, 吴习宇, 任丹, 徐丹. 贮藏温度对纳米晶纤维素/壳聚糖涂膜保鲜效果的影响[J]. 食品与发酵工业, 2022, 48(17): 222-229.
[8] 杨振光, 任洪冰, 苏舒, 刘秉珍, 李莉蓉, 曹建新. 云南泡藠头和泡辣椒中细菌与真菌群落结构和多样性分析[J]. 食品与发酵工业, 2022, 48(16): 196-202.
[9] 鲁梅, 宋从从, 石桂珍, 杨青, 李德青, 窦祎凝. 赤水晒醋醋酸发酵过程原核微生物群落及理化因子相关性分析[J]. 食品与发酵工业, 2022, 48(10): 219-225.
[10] 侯强川, 王玉荣, 王文平, 田龙新, 赵慧君, 郭壮. 茅台和尧治河高温大曲细菌群落结构差异及功能预测[J]. 食品与发酵工业, 2022, 48(1): 36-44.
[11] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[12] 闫欣鹏, 张润光, 梁琪琪, 郭晓成, 姚岗, 李玉英, 张有林. 低温结合1-MCP处理对突尼斯软籽石榴采后品质的影响[J]. 食品与发酵工业, 2021, 47(5): 147-155.
[13] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[14] 汪冬冬, 唐垚, 伍亚龙, 张伟, 陈功, 张文学, 张其圣. 泡菜细菌多样性和风味成分研究进展[J]. 食品与发酵工业, 2021, 47(21): 296-302.
[15] 王子媛, 宋庭羽, 邵毅君, 凌霞, 侯强川, 郭壮. 慈利和古丈地区酸肉细菌多样性差异研究及其功能预测[J]. 食品与发酵工业, 2021, 47(20): 126-132.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[3] . [J]. Food and Fermentation Industries, 2002, 28(4): 14 .
[4] . The Effect of Acidification and Concentration on Spray Drying of Longan[J]. Food and Fermentation Industries, 2002, 28(5): 39 .
[5] . [J]. Food and Fermentation Industries, 2002, 28(5): 76 .
[6] Huai Lihua,Chen Ning. The Metabolic Control Strategy for Breeding of Pyrimidine High-producing Strain[J]. Food and Fermentation Industries, 2005, 31(10): 107 .
[7] WU A-bao,HUANG Ting-xuan,YANG Zu-shun,GAO Wen,ZHOU Guo-ping. Identification and analysis of Bacillus ginsengihumi in a green-tea beverage deterioration[J]. Food and Fermentation Industries, 2017, 43(9): 124 .
[8] ZOU Wei,WANG Dong,XU Yan. Determination of trace cyanides in Chinese rice wine and its raw materials[J]. Food and Fermentation Industries, 2017, 43(9): 189 .
[9] Zhang Bingyun,Zhao Jie,Jiang Xia. Preservation Study on Chilled Pork Coated by Cactus Extracts[J]. Food and Fermentation Industries, 2005, 31(11): 145 .
[10] Yang Guolong,Zhao Mouming,Yang Xiaoquan,Xu Xiang,Peng Zhiying. Selective Enzymolysis of Native Soy Protein[J]. Food and Fermentation Industries, 2006, 32(2): 132 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn