为了进一步提高谷氨酸菌体细胞膜的通透性和谷氨酸产量,采用超声辅助谷氨酸发酵。通过单因素及正交实验研究,确定了最佳超声条件为超声时间50 s、振幅65%、间隔时间5 min,发酵起始,即开始超声处理至发酵8 h,结束超声。在最佳超声条件下进行谷氨酸发酵,菌体OD(600 nm)值为82.5,提高13.8%,谷氨酸产量为168 g/L,提高11.3%,糖酸转化率为68.2%,提高4.3%,菌体转型时间由4 h提前至2 h。超声辅助谷氨酸发酵能够达到较好的效果,使发酵过程更加稳定。
In order to further increase the permeability of glutamic acid cell membranes and glutamate production, ultrasound was used to assist glutamate fermentation. In this study, single-factor experiments and orthogonal experiments were conducted to determine the optimal ultrasonic conditions: sonicated for 50 s using 65% amplitude every 5 min. Sonication was carried out for 8 h from the beginning of the fermentation to the end of the fermentation. Under the optimal ultrasonic conditions, glutamate fermentation had the OD (600 nm) of bacteria increased 13.8% to be 82.5, the glutamic acid yield increased 11.3% to be 168 g/L, and the saccharic acid conversion rate increased 4.3% to be 68.2%. The transformation time of bacteria advanced from 4 h to 2 h. Ultrasonic assisted glutamic acid fermentation could achieve better results and make the fermentation process more stable.
[1] 姚辉. 谷氨酸棒杆菌S9114的发酵优化及生物素对谷氨酸发酵的调控[D]. 无锡:江南大学, 2013.
[2] 曹艳, ENOCK MPOFU,丁健,等. 初始生物素含量波动时谷氨酸发酵关键酶系的酶活变化模式[J]. 化工学报, 2012, 63(7):2 188-2 194.
[3] SUSLICK K S, PRICE G J. Applications of ultrasound to materials chemistry[J]. Mrs Bulletin, 1995, 20(4):29-34.
[4] GOH K M, LAI O M, ABAS F, et al. Effects of sonication on the extraction of free-amino acids from moromi and application to the laboratory scale rapid fermentation of soy sauce[J]. Food Chemistry, 2017, 215:200-208.
[5] 刘晓艳,丘泰球,刘石生,等. 超声对细胞膜通透性的影响及应用[J]. 应用声学, 2002, 21(2):26-29.
[6] 吕园丽,吴胜举,马艳,等. 超声对细胞膜通透性影响的研究现状[J]. 菏泽学院学报, 2007, 29(5):67-69.
[7] 王武,杨海鳞,吕霞付,等.超声波在生物发酵工程中的应用[J]. 无锡轻工大学学报, 2002(3):322-326.
[8] 戴传云,王伯初. 低功率超声波对微生物发酵的影响[J]. 重庆大学学报, 2003, 26(2):15.
[9] RAZA A, LI F, XU X, et al. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology[J]. International Journal of Biological Macromolecules, 2017, 94(Pt A):335-344.
[10] 卢群,丘泰球,刘晓艳,等. 超声物理效应影响细胞膜通透性的研究[J]. 声学技术, 2004, 23(z2):000047-48.
[11] SHI L, WANG B, YANG Y, et al. Application of low intensity ultrasound to biotechnology[J]. Journal of Chongqing University, 2002, 25:148-153.
[12] 洪晴悦,张玉. 超声波辅助提取牡丹籽毛油的工艺优化及脂肪酸组成分析[J]. 食品与发酵工业, 2018,44(3):159-164.
[13] 高大维,雷德柱. 多波形超声波辐照对啤酒酵母细胞生长的影响[J]. 华南理工大学学报(自然科学版), 2000, 28(7):36-39.
[14] 李柏林,储炬,李友荣,等. 在线超声波处理对庆大霉素生物合成的影响[J]. 中国抗生素杂志, 1997(4):250-253.
[15] 孟祥勇,冯东阳,毛健,等. 循环超声波辅助黄酒后发酵风味物质的变化分析[J]. 中国农业科技导报, 2015, 17(5):142-150.
[16] WANG Z, LIU F, HAILE M A, et al. Ultrasound-assisted alcohol fermentation technology[J]. Liquor-Making Science & Technology, 2016,18(3):56-67.
[17] 张金玲. 基于生物参数在线检测的谷氨酸发酵及其动力学研究[D]. 济南:齐鲁工业大学, 2014.
[18] 郜培. 基于代谢网络模型的谷氨酸发酵在线优化与控制的研究[D]. 无锡:江南大学, 2006.
[19] 陈宁. 氨基酸工艺学(高校教材)[M]. 北京:中国轻工业出版社, 2007.
[20] 白长胜,韩隽,梁恒宇,等. 谷氨酸发酵过程中溶氧控制条件优化[J]. 食品工业, 2015(4):179-181.
[21] LEE Y J, JANG J W, KIM K J, et al. TCA cycle‐independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae[J].Yeast, 2011, 28(2):153-166.
[22] 付丙勇. 谷氨酸发酵过程中乳酸的生成规律与策略[J]. 发酵科技通讯, 2010, 39(3):45-47.