[1] ONG Y S, GAO Li-qian, KALESH K A, et al. Recent advances in synthesis and identification of cyclic peptides for bioapplications[J]. Current Topics in Medicinal Chemistry, 2017, 17(20): 2 302-2 318.
[2] GAUSE G F, BRAZHNIKOVA M G. Gramicidin S and its use in the treatment of infected wounds[J]. Nature, 1944, 154:703.
[3] WHITE C J, YUDIN A K. Contemporary strategies for peptide macrocyclization[J]. Nature Chemistry, 2011, 3(7): 509-524.
[4] RUBIN S J S, QVIT N. Backbone-cyclized peptides: A critical review[J]. Current Topics in Medicinal Chemistry, 2018, 18(7): 526-555.
[5] BOCK V D, PERCIACCANTE R, JANSEN T P, et al. Click chemistry as a route to cyclic tetrapeptide analogues: Synthesis of cyclo-[Pro-Val-Psi(triazole)-Pro-Tyr][J]. Organic Letters, 2006, 8(5): 919-922.
[6] FUKUZUMI T,JU Lei, BODE J W. Chemoselective cyclization of unprotected linear peptides by alpha-ketoacid-hydroxylamine amide-ligation[J]. Organic & Biomolecular Chemistry, 2012, 10(30): 5 837-5 844.
[7] WHITE C J, YUDIN A K. Contemporary strategies for peptide macrocyclization[J]. Nature Chemistry, 2011, 3(7): 509-524.
[8] 王心哲,张光亚. 蛋白质环化的研究进展[J].生物工程学报, 2016, 32(4): 430-439.
[9] SCOTT C P, ABEL-SANTOS E, WALL M, et al. Production of cyclic peptides and proteins in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13 638-1 3643.
[10] XU Si-lin, ZHAO Zheng-guang, ZHAO Jun-feng. Recent advances in enzyme-mediated peptide ligation[J]. Chinese Chemical Letters, 2018, 29(7): 1 009-1 016.
[11] 马颖,刘忞之,王伟. 转肽酶A在蛋白质和多肽修饰中的应用[J].中国医药生物技术, 2017, 12(2): 157-161.
[12] 谭祥龙,许玲,石景,等. 转肽酶Sortase A在蛋白质修饰中的应用[J].化学进展, 2014, 26(10): 1 741-1 751.
[13] ZHANG Jing, YAMAGUCHI S, HIRAKAWA H, et al. Intracellular protein cyclization catalyzed by exogenously transduced Streptococcus pyogenes sortase A[J]. Journal of Bioscience and Bioengineering, 2013, 116(3): 298-301.
[14] WU Zhi-meng, GUO Xue-qing, GUO Zhong-wu. Sortase A-catalyzed peptide cyclization for the synthesis of macrocyclic peptides and glycopeptides[J]. Chemical Communications, 2011, 47(32): 9 218-9 220.
[15] WU Zhimeng, CHENG Xiaozhong, HONG Haofei, et al. New potent and selective alphavbeta3 integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation[J]. Bioorganic and Medicinal Chemistry Letters, 2017, 27(9): 1 911-1 913.
[16] BOLSCHER J G M, OUDHOFF M J, NAZMI K, et al. Sortase A as a tool for high-yield histatin cyclization[J]. FASEB Journal, 2011, 25(8): 2 650-2 658.
[17] JIA Xinying, KWON S, WANG C I, et al. Semienzymatic cyclization of disulfide-rich peptides using Sortase A[J]. Journal of Biological Chemistry, 2014, 289(10): 6 627-6 638.
[18] POPP M W L, PLOEGH H L. Making and breaking peptide bonds: Protein engineering using sortase[J]. Angewandte Chemie-International Edition, 2011, 50(22): 5 024-5 032.
[19] RASCHE N, TONILLO J, RIEKER M, et al. PROLink-single step circularization and purification procedure for the generation of an improved variant of human growth hormone[J]. Bioconjugate Chemistry, 2016, 27(5): 1 341-1 347.
[20] ZHANG Jing, YAMAGUCHI S, NAGAMUNE T. Sortase A-mediated synthesis of ligand-grafted cyclized peptides for modulating a model protein-protein interaction[J]. Biotechnol Journal, 2015, 10(9): 1 499-1 505.
[21] GUIMARAES C P, WITTE M D, THEILE C S, et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions[J]. Nature Protocols, 2013, 8(9): 1 787-1 799.
[22] ANTOS J M, CHEW G L, GUIMARAES C P, et al. Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity[J]. Journal of the American Chemical Society, 2009, 131(31): 10 800-10 801.
[23] WILLIAMSON D J, FASCIONE M A, WEBB M E, et al. Efficient N-terminal labeling of proteins by use of sortase[J]. Angewandte Chemie-International Edition, 2012, 51(37): 9 377-9 380.
[24] LI Yiming, LI Yitong, PAN Man, et al. Irreversible site-specific hydrazinolysis of proteins by use of sortase[J]. Angewandte Chemie-International Edition, 2014, 53(8): 2 198-2 202.
[25] WU Zhi-meng, LIU Shao-zhong, CHENG Xiao-zhong, et al. High yield synthesis of cyclic analogues of antibacterial peptides P-113 by Sortase A-mediated ligation and their conformation studies[J]. Chinese Chemical Letters, 2017, 28(3): 553-557.
[26] CRAIK D J, DALY N L, BOND T, et al. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif[J]. Journal of Molecular Biology, 1999, 294(5): 1 327-1 336.
[27] NGUYEN G K T, WANG Shu-jing, QIU Yi-bo, et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis[J]. Nature Chemical Biology, 2014, 10(9): 732-738.
[28] NGUYEN G K T, HEMU X, QUEK J P, et al. Butelase-mediated macrocyclization of d-amino-acid-containing peptides[J]. Angewandte Chemie-International Edition, 2016, 55(41): 12 802-12 806.
[29] NGUYEN G K, QIU Yi-bo, CAO Yuan, et al. Butelase-mediated cyclization and ligation of peptides and proteins[J]. Nat Protocols, 2016, 11(10): 1 977-1 988.
[30] HEMU X, QIU Yi-bo, NGUYEN G K, et al. Total synthesis of circular bacteriocins by butelase 1[J]. Journal of the American Chemical Society, 2016, 138(22): 6 968-6 971.
[31] HARRIS K S, DUREK T, KAAS Q, et al. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase[J]. Nature Communications, 2015, 6:10 199.
[32] YANG Ren-liang, WONG Y H, NGUYEN G K T, et al. Engineering a catalytically efficient recombinant protein ligase[J]. Journal of the American Chemical Society, 2017, 139(15): 5 351-5 358.
[33] JACKSON D Y, BURNIER J P, WELLS J A. Enzymatic cyclization of linear peptide esters using subtiligase[J]. Journal of the American Chemical Society, 1995, 117(2): 819-820.
[34] TOPLAK A, NUIJENS T, QUAEDFLIEG P J L M, et al. Peptiligase, an enzyme for efficient chemoenzymatic peptide synthesis and cyclization in water[J]. Advanced Synthesis & Catalysis, 2016, 358(13): 2 140-2 147.
[35] SCHMIDT M, TOPLAK A, QUAEDFLIEG P J L M, et al. Omniligase-1: A powerful tool for peptide head-to-tail cyclization[J]. Advanced Synthesis & Catalysis, 2017, 359(12): 2 050-2 055.
[36] TRAUGER J W, KOHLI R M, MOOTZ H D, et al. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase[J]. Nature, 2000, 407(6 801): 215-218.
[37] GRUNEWALD J, MARAHIEL M A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides[J]. Microbiology and Molecular Biology Reviews, 2006, 70(1): 121-146.
[38] KOHLI R M, TRAUGER J W, SCHWARZER D, et al. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases[J]. Biochemistry, 2001, 40(24): 7 099-7 108.
[39] KOHLI R M, WALSH C T, BURKART M D. Biomimetic synthesis and optimization of cyclic peptide antibiotics[J]. Nature, 2002, 418(6 898): 658-661.
[40] WU Xiao-ming, BU Xian-zhang, WONG Ka-man, et al. Biomimetic synthesis of gramicidin S and analogues by enzymatic cyclization of linear precursors on solid support[J]. Organic Letters, 2003, 5(10): 1 749-1 752.
[41] LEE J, MCINTOSH J, HATHAWAY B J, et al. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates[J]. Journal of the American Chemical Society, 2009, 131(6): 2 122-2 124.
[42] MCINTOSH J A, ROBERTSON C R, AGARWAL V, et al. Circular logic: Nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst[J]. Journal of the American Chemical Society, 2010, 132(44): 15 499-15 501.
[43] KOEHNKE J, BENT A, HOUSSEN W E, et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain[J]. Nature Structural & Molecular Biology, 2012, 19(8): 767-772.
[44] BRAS N F, FERREIRA P, CALIXTO A R, et al. The catalytic mechanism of the marine-derived macrocyclase PatGmac[J]. Chemistry-a European Journal, 2016, 22(37): 13 089-13 097.
[45] SARDAR D, LIN Zhen-jian, SCHMIDT E W. Modularity of RiPP enzymes enables designed synthesis of decorated peptides[J]. Chemistry & Biology, 2015, 22(7): 907-916.
[46] ALEXANDRU-CRIVAC C N, UMEOBIKA C, LEIKOSKI N, et al. Cyclic peptide production using a macrocyclase with enhanced substrate promiscuity and relaxed recognition determinants[J]. Chemical Communications, 2017, 53(77): 10 656-10 659.
[47] OUEIS E, JASPARS M, WESTWOOD N J, et al. Enzymatic macrocyclization of 1,2,3-triazole peptide mimetics[J]. Angewandte Chemie-International Edition, 2016, 55(19): 5 842-5 845.
[48] ZHANG Chi, DAI Ping, SPOKOYNY A M, et al. Enzyme-catalyzed macrocyclization of long unprotected peptides[J]. Organic Letters, 2014, 16(14): 3 652-3 655.
[49] MINDT T L, JUNGI V, WYSS S, et al. Modification of different IgG1 antibodies via glutamine and lysine using bacterial and human tissue transglutaminase[J]. Bioconjugate Chemistry, 2008, 19(1): 271-278.
[50] TOUATI J, ANGELINI A, HINNER M J, et al. Enzymatic cyclisation of peptides with a transglutaminase[J]. Chembiochem, 2011, 12(1): 38-42.