研究报告

褪黑素调控缺氮胁迫下单针藻中油脂积累的影响

  • 李喜明 ,
  • 赵永腾 ,
  • 余旭亚
展开
  • (昆明理工大学 生命科学与技术学院,云南 昆明,650500)
硕士研究生(余旭亚教授为通讯作者,E-mail:xuya_yu@163.com)。

收稿日期: 2018-05-09

  网络出版日期: 2019-02-21

基金资助

国家自然科学基金(21766012);云南省重大科技专项计划(2018ZG003);国家自然科学基金(21666012)

Effects of melatonin on regulating lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency stress

  • LI Ximing ,
  • ZHAO Yongteng ,
  • YU Xuya
Expand
  • (Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500, China)

Received date: 2018-05-09

  Online published: 2019-02-21

摘要

研究缺氮条件下外源添加褪黑素(melatonin,MT)对单针藻Monoraphidium sp. QLY-1中油脂积累及相关基因表达水平的影响。结果表明,缺氮胁迫联合MT诱导,微藻的生物量比对照组(0.89 g/L)提高了1.12倍;油脂含量提高了1.22倍,且最高可达51.8%。此外,外源MT上调了rbcL和accD的表达水平及内源信号分子赤霉素(gibberellic acid,GA)的含量,同时下调pepc表达水平并抑制脱落酸(abscisic acid,ABA)的合成。研究表明,在缺氮胁迫条件下,微藻中油脂的大量积累可能与MT调控细胞内信号分子及相关酶基因的表达有关。

本文引用格式

李喜明 , 赵永腾 , 余旭亚 . 褪黑素调控缺氮胁迫下单针藻中油脂积累的影响[J]. 食品与发酵工业, 2019 , 45(2) : 39 -44 . DOI: 10.13995/j.cnki.11-1802/ts.017735

Abstract

The effects of exogenous melatonin (MT) on lipid accumulation and lipid-related gene expression in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions were investigated. The results showed that MT treatment together with nitrogen deficiency enhanced the biomass concentration of microalgae by 1.12-fold than that of control (0.89 g/L). Moreover, the lipid content increased by 1.22-fold with the lipid maximum of 51.8%. Furthermore, the exogenous MT up-regulated the expression levels of rbcL and accD, and increased the accumulation of gibberellin acid (GA), which is an endogenous signal molecule. Simultaneously, the pepC expression level was down-regulated and the synthesis of abscisic acid (ABA) was restrained. These findings showed that massive accumulation of lipid in microalgae might be correlated with the regulation of intracellular signaling molecules and lipid-related enzyme gene expression by MT under nitrogen deficiency stress condition.

参考文献

[1] SHARIF HOSSAIN A B M, SALLEH A, BOYCE A N, et al. Biodiesel fuel production from algae as renewable energy [J] .American Journal of Biochemistry & Biotechnology, 2008, 49(1):250-254.
[2] SHUBA E S, KIFLE D. Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review[J] .Renewable & Sustainable Energy Reviews, 2018, 81(1):743-755.
[3] LI D, ZHAO Y, DING W, et al. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1by combined melatonin and photoinduction[J] Bioresource Technol,2017, 235(2):104-112.
[4] YU Z, PEI H, JIANG L, et al. Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae[J] .Bioresource Technol,2018, 247(4):904-914.
[5] BABU A G, WU X, KABRA A N, et al. Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation[J] .Algal Res, 2017, 23(2):178-185.
[6] CHOKSHI K, PANCHA I, GHOSH A, et al. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus [J] .Biotechnol Biofuels,2017, 10(1): 60-71.
[7] CHOKSHI K, PANCHA I, GHOSH A, et al. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus [J] .Bioresource Technol,2017, 224(2): 1376-1383.
[8] ZHANG H J, ZHANG N, YANG R C, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.)[J] .J Pineal Res,2014, 57(3): 269-279.
[9] SULOCHANA S B, ARUMUGAM M. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition[J] .Bioresource Technol, 2016, 213(2): 198-203.
[10] RENUKA N, GULDHE A, SINGH P, et al. Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress[J] .Energ Convers Manage,2017, 140(4): 14-23.
[11] ZHAO Y, LI D, DING K, et al. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1through heterotrophic cultivation and photo-chemical modulator induction[J] .Bioresource Technol,2016, 211(3): 669-676.
[12] WEEDA S, ZHANG N, ZHAO X, et al. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems[J] .Plos One, 2014, 9(3):e93462.
[13] WANG Y, REITER R J, CHAN Z. Phytomelatonin: a universal abiotic stress regulator [J] .Journal of Experimental Botany, 2017, 69(5): 963-974.
[14] LERNER A B, CASE J D, TAKAHASHI Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes1[J] . Journal of the American Chemical Society, 1958, 80(10): 2587.
[15] REITER R J, TAN D X, ZHOU Z, et al. Phytomelatonin: Assisting Plants to Survive and Thrive[J] . Molecules, 2015, 20(4):7396-7437.
[16] DING W, ZHAO Y, XU J W, et al. Melatonin: A multifunctional molecule that triggers defence responses against high light and nitrogen starvation stress in Haematococcus pluvialis[J] . Journal of agricultural and food chemistry, 2018, 66(29): 7701-7771.
[17] DING W, ZHAO P, PENG J, et al. Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance[J] . Algal Research, 2018, 33(6): 256-265.
[18] 李大菲,赵永腾,余旭亚. 褪黑素对单针藻油脂积累的影响[J] .水生生物学报, 2018, 42(2): 421-427.
[19] MILLER R, WU G, DESHPANDE R R, et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism[J] .Plant Physiology, 2010, 154(4):1737-1752.
[20] FAN J, HUANG J, LI Y, et al. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production[J] .Bioresource Technology, 2012, 112(5):206-211.
[21] MA X, LIU J, LIU B, et al. Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata[J] .Algal Research, 2016, 16(5):28-35.
[22] ZHANG J, SHI Y, ZHANG X, et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.)[J] .Environ Exp Bot 2017, 138(5): 36-45.
[23] CHE R, HUANG L, XU J W, et al. Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. FXY-10[J] .Bioresource Technol 2017, 227(2): 324-334.
[24] SINGH P, KUMARI S, GULDHE A, et al. ACCase and rbcL gene expression as a function of nutrient and metal stress for enhancing lipid productivity in Chlorella sorokiniana[J] .Energ Convers Manage 2017, 148(8): 809-819.
[25] FAN J, CUI Y, WAN M, et al. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors[J] .Biotechnol Biofuel 2014, 7(1): 1-14.
文章导航

/