[1] LANA A, ZOLLA L. Apoptosis or autophagy, that is the question: Two ways for muscle sacrifice towards meat [J] . Food Science and Technology, 2015, 46(2): 231-239.
[2] 刘煜敏,徐仁.兴奋性氨基酸、氧自由基与缺血再灌注脑损伤关系的实验观察[J] .卒中与神经疾病, 2000, 7(2): 98-100.
[3] WANG Songhai, HE Hong, CHEN Lei, et al. Protective effects of salidroside in the MPTP/MPP+-induced model of Parkinson’s disease through ROS-NO-related mitochondrion pathway[J] . Molecular Neurobiology, 2015, 51(2): 718-726.
[4] 夏舒萌,张德琛,吴小晶,等. 大鼠肢体缺血再灌注损伤与骨骼肌呼吸链电子漏的关系[J] . 基础医学与临床, 2002, 22(3): 239-240.
[5] CURTIN J F, DONOVAN M, COTTER T G. Regulation and measurement of oxidative stress in apoptosis[J] . Journal of Immunological Methods, 2002, 265(1): 49-72.
[6] VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J] . The International Journal of Biochemistry and Cell Biology, 2007, 39(1): 44-84.
[7] GIORGIO M, TRINEI M, MIGLIACCIO E, et al. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? [J] . Nature Reviews Molecular Cell Biology, 2007, 8(9): 722-728.
[8] GUPTA S, GOLLAPUDI S. Susceptibility of naive and subsets of memory T cells to apoptosis multiple signaling pathways [J] .Autoimmunity Reviews, 2007, 6(7): 476-480.
[9] SCHIEBER M, CHANDEL N S. ROS Function in redox signaling and oxidative stress[J] . Current Biology, 2014, 24(10): R 453-R 462.
[10] HATOK J, RACAY P. Bcl-2family proteins: Master regulators of cell survival[J] . Biomolecular Concepts, 2016, 7(4): 259-270.
[11] ZHANG Zhongwei, XU Xiaochao, LIU Ting, et al. Mitochondrion-Permeable antioxidants to treat ROS-burst-mediated acute diseases[J] . Oxidative Medicine and Cellular Longevity, 2015, 2016(1): 81-203.
[12] BAUDRY N, LAEMMEL E, VICAUT E. In vivo reactive oxygen species production induced by ischemia in muscle arterioles of mice: Involvement of xanthine oxidase and mitochondria[J] . American Journal of Physiology-Heart and Circulatory Physiology, 2008, 294(2): 821-828.
[13] WANG Linlin, YU Qunli, HAN Lin, et al. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat[J] . Food Chemistry, 2018, 244: 394-402.
[14] 彭伟,骆泓洁,元小冬. 死亡受体介导的细胞凋亡研究进展[J] . 生命的化学, 2016, 36(5): 629-632.
[15] STEWART J H, TRAN T L, LEVI N, et al. The essential role of the mitochondria and reactive oxygen species in Cisplatin-mediated enhancement of as ligand-induced apoptosis malignant pleural mesothelioma[J] . Journal of Surgical Research, 2007, 141(1):120-131.
[16] LI Yiping, CHEN Yuling, JOHN J, et al. TNF-α acts via p38MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle[J] . The FASEB Journal, 2005, 19(3): 362-370.
[17] KYRIAKIS J M, BANERJEE P, NIKOLAKAKI E, et al. The stress-activated protein kinase subfamily of c-Jun kinases[J] . Nature, 1994, 369(6476): 156-160.
[18] NONN L, WILLIAMS R R, ERICKSON R P, et al. The absence of mitochondrial thioredoxin2causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice[J] . Molecular and Cellular Biology, 2003, 23(3): 916-922.
[19] TSUJIMOTO Y, SHIMIZU S. Another way to die: Autophagic programmed cell death[J] . Cell Death and Differentiation, 2005, 12(S2): 1528-1534.
[20] KEMP C M,BARDSLEY R G. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle[J] .Journal of Animal Science,2006,84(10): 2841-2846.
[21] KRAFT C, MARTENS S. Mechanisms and regulation of autophagosome formation[J] . Current Opinion in Cell Biology, 2012, 24(4): 496-501.
[22] MARINO G, NISOSANTANO M, BAEHRECKE E H, et al. Self-consumption: The interplay of autophagy and apoptosis[J] . Nature Reviews Molecular Cell Biology, 2014, 15(2):81-94.
[23] EISENBERG-LERNER A, BIALIK S, SIMON H U, et al. Life and death partners: Apoptosis, autophagy and the cross-talk between them[J] . Cell Death & Differentiation, 2009, 16(7): 966-975.
[24] WANG Zhong, WILSON W A, FUJINO M A, et al. Antagonistic controls of autophagy and glycogen accumulation by snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase pho85p[J] . Molecular and Cellular Biology, 2001, 21(17): 5742-5752.
[25] AZAD M B, CHEN Yongqing, GIBSON S B. Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment[J] . Antioxidants and Redox Signaling, 2009, 11(4): 777-790.
[26] 刘亚楠.黄绿青霉素通过ROS介导HepG2细胞自噬性死亡的实验研究[D] .大连:大连医科大学, 2015.
[27] 边希云.自噬/线粒体自噬在锌诱导的抗心肌细胞缺氧/复氧损伤保护中的作用[D] .天津:天津医科大学,2017.
[28] CHEN Yongqiang, MCMILLANWARD E, KONG J, et al. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells[J] . Cell Death and Differentiation, 2008, 15(1):171-182.
[29] 李欣志,刘建勋. 缺血/再灌注过程中心肌细胞自噬研究进展[J] . 中国药理学通报, 2008, 24(6): 704-707.
[30] GALVEZ A S, BRUNSKILL E W, MARREEZ Y, et al. Distinct pathways regulate proapoptotic Nix and BNip3in cardiac stress[J] . Journal of Biological Chemistry, 2006, 281(3): 1442-1448.
[31] ZHANG Huafeng, BOSCHMARCE M, SHIMODA L A, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J] . Journal of Biological Chemistry, 2008, 283(16):10892-10903.
[32] 陈娜子,姜潮,李校堃. 内质网应激与疾病[J] . 中国生物工程杂志,2016,36(1): 76-85.
[33] CHEN Yongqing, MCMILLANWARD E M, KONG J, et al. Mitochondrial electron-transport-chain inhibitors of complexes Ⅰ and Ⅱ induce autophagic cell death mediated by reactive oxygen species[J] . Journal of Cell Science, 2007, 120(23): 4155-4166.
[34] 贾旭. 羊肉成熟过程中细胞自噬对细胞凋亡的影响研究[D] . 杨凌:西北农林科技大学, 2017.
[35] OBITSU S, SAKATA K, TESHIMA R, et al. Eleostearic acid induces RIP1-mediated atypical apoptosis in a kinase-independent manner via ERK phosphorylation, ROS generation and mitochondrial dysfunction[J] . Cell Death and Disease, 2013, 4(6): e661-e674.
[36] 徐婷婷. 活性氧簇通过激活RIP1促进程序性细胞坏死[J] . 厦门大学学报(自然科学版), 2017, 56(4): 462.
[37] 崔红旺,孟志斌,黄涛,等. TNF-α诱导MLO-Y4细胞发生RIP3介导的程序性坏死[J] .中国病理生理杂志, 2017,33(8): 1499-1505.
[38] SHINDO R, KAKEHASHI H, OKUMURA K, et al. Critical contribution of oxidative stress to TNF α-induced necroptosis downstream of RIPK1activation[J] . Biochemical and Biophysical Research Communications, 2013, 436(2): 212-216.
[39] 宋必卫,王璐.细胞程序性坏死——一种细胞死亡新方式[J] .生理科学进展, 2013, 44(4): 281-285.
[40] LUND M N, HEINONEN M, BARON C P, et al. Protein oxidation in muscle foods: A review[J] . Molecular Nutrition and Food Research, 2011, 55(1): 83-95.
[41] FU Qingquan, LIU Rui, ZHANG Wangang, et al. Effects of different packaging systems on beef tenderness through protein modifications[J] . Food and Bioprocess Technology, 2015, 8(3): 580-588.
[42] MAO Weijie, LI Xiaolong, FUKUOKA M, et al. Study of Ca2+-ATPase activity and solubility in the whole kuruma prawn (Marsupenaeus japonicus) meat during heating: Based on the kinetics analysis of myofibril protein thermal denaturation[J] . Food and Bioprocess Technology, 2016, 9(9): 1511-1520.
[43] DAVIES M J. The oxidative environment and protein damage [J] . Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2013, 1703(2): 93-109.
[44] MORZEL M, GATELLIER P, SAYD T, et al. Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins[J] . Meat Science, 2006, 73(3): 536-543.
[45] LAMETSCH R, LONERGAN S, HUFF-LONERGAN E. Disulfide bond within mu-calpain active site inhibits activity and autolysis[J] . Biochimica Et Biophysica Acta Proteins and Proteomics, 2008, 1784(9): 1215-1221.
[46] SOHN J H, OHSHIMA T. Control of lipid oxidation and meat color deterioration in skipjack tuna muscle during ice storage[J] . Fisheries Science, 2010, 76(4): 703-710.
[47] MUNASINGHE D M, OHKUBO T, SAKAI T, et al. The lipid peroxidation induced changes of protein in refrigerated yellowtail minced meat[J] . Fisheries Science, 2005, 71(2): 462-464.
[48] 薛梅. 蛋白质氧化对牛肉成熟过程肌原纤维蛋白降解和食用品质的影响[D] .南京:南京农业大学, 2012.
[49] OGRADY M N, MONAHAN E J, BRUNTON N P, et al. Oxymyoglobin oxidation and lipid oxidation in bovine muscle-mechanistic studies[J] . Journal of Food Science, 2001, 66(3): 386-392.