分析与检测

用于水产品中甲醛、双氧水和二氧化硫同时快速检测的微流控芯片系统研制

  • 周新丽 ,
  • 申炳阳 ,
  • 孔兵 ,
  • 高丽娟 ,
  • 冯罗兰 ,
  • 王振华 ,
  • 叶嘉明
展开
  • 1(上海理工大学 医疗器械与食品学院,上海,200093)
    2(浙江清华长三角研究院 分析测试中心,浙江 嘉兴,314006)
    3(国家食品安全风险评估中心 应用技术合作中心,浙江 嘉兴,314006)
博士,教授(周新丽教授与叶嘉明高级工程师为共同通讯作者;E-mail:zjulily@163.com,yejiaming123@126.com)。

收稿日期: 2018-06-07

  网络出版日期: 2019-03-26

基金资助

国家自然科学基金重大科研仪器研制项目(2162 7812);浙江省科技计划项目(2016C32035)

Development of microfluidic chip system for simultaneously rapid detection of formaldehyde, hydrogen peroxide and sulfur dioxide in aquatic products

  • ZHOU Xinli ,
  • SHEN Bingyang ,
  • KONG Bing ,
  • GAO Lijuan ,
  • FENG Luolan ,
  • WANG Zhenhua ,
  • YE Jiaming
Expand
  • 1(School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
    2(Analysis and Testing Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China)
    3(Cooperation Center for Application Technology, China National Center for Food Safety Risk Assessment, Jiaxing 314006, China)

Received date: 2018-06-07

  Online published: 2019-03-26

摘要

基于微流控技术与分光光度法,研制了一套用于水产品中甲醛、双氧水和SO2快速检测的微流控芯片系统。该系统在一次性扇形微流控芯片上集成了进样、显色反应及检测单元,每张芯片可同时检测甲醛、双氧水和SO2三种指标。结果显示,微流控芯片系统能够在5 min内实现对水产品中甲醛、双氧水、SO2三种指标的准确检测,检出限分别可达到0.3、0.4、0.2 mg/L,回收率在92.38%~107.98%,相对标准偏差均低于4%。微流控芯片系统能够实现对水产品中甲醛、双氧水和SO2进行现场、快速、全自动、高通量检测,适合基层非专业人员开展筛选需求,体现了微流控芯片在食品快速检测应用中的巨大潜力。

本文引用格式

周新丽 , 申炳阳 , 孔兵 , 高丽娟 , 冯罗兰 , 王振华 , 叶嘉明 . 用于水产品中甲醛、双氧水和二氧化硫同时快速检测的微流控芯片系统研制[J]. 食品与发酵工业, 2019 , 45(4) : 187 -192 . DOI: 10.13995/j.cnki.11-1802/ts.017978

Abstract

Based on microfluidic technology and spectrophotometry, a microfluidic chip system for rapid detection of formaldehyde, hydrogen peroxide, and sulfur dioxide in aquatic products was developed. This disposable fan-shaped microfluidic chip was integrated with sampling, color reaction, and detection chamber. Each chip could detect 3 indexes such as formaldehyde, hydrogen peroxide, and sulfur dioxide at the same time. The results showed that the microfluidic chip system could accurately detect formaldehyde, hydrogen peroxide, and sulfur dioxide in aquatic products in 5 minutes with detection limits of 0.3 mg/L, 0.4 mg/L, and 0.2 mg/L, respectively. The recovery rate was 92.38%-107.98%, and the relative standard deviation was less than 4%. The microfluidic chip system can realize on-site, rapid, automatic, and high throughput detection of formaldehyde, hydrogen peroxide and sulfur dioxide in aquatic products, which is suitable for unprofessional individuals to screen the products, showing a great potential of applying microfluidic chip in rapid detection for foods.

参考文献

[1] 陈胜军,李来好,杨贤庆,等. 我国水产品安全风险来源与风险评估研究进展[J]. 食品科学, 2015, 36(17): 300-304.
[2] 叶兴乾,张献忠,刘东红. 食品中非法添加物检测及分析技术进展[J]. 食品科学技术学报, 2012, 30(6): 19-23.
[3] 戴京晶. 水发产品中pH、甲醛、过氧化氢监测结果分析[J]. 中国卫生检验杂志, 2010(12): 3 420-3 421.
[4] 靳红果,刘华琳,张瑞,等. 食品中甲醛及其检测方法[J]. 食品工业科技, 2013, 34(19): 373-377.
[5] 国家卫生和计划生育委员会. GB 2760—2014食品安全国家标准食品添加剂使用标准[S]. 北京:中国标准出版社,2014.
[6] 潘迎芬,方成俊,钱疆,等. 分光光度法测定水产品中SO2残留量[J]. 福建分析测试, 2012(3): 30-32.
[7] 梁耀娟,杜启东. 关于海产品中SO2限量的探讨[J]. 食品安全导刊, 2017(33): 81-82.
[8] 刘敏. 高效液相色谱法测定食品中的添加剂和非法添加物[D]. 泰安:山东农业大学, 2012: 9-11.
[9] 崔庆新,王方. 气相色谱-质谱联用法在食品分析中的应用——在食品添加剂及毒物分析中的应用[J]. 聊城大学学报:自然科学版, 2009, 22(3): 48-52.
[10] 仲岳桐,陈春晓,康莉,等. 高效液相色谱-质谱联用法检测蛋类食品中的苏丹红四号[J]. 中国卫生检验杂志, 2007, 17(9): 1 601-1 602.
[11] 宋江峰,韩晨. 离子色谱法在食品添加剂检测中应用[J]. 粮食与油脂, 2007(5): 42-44.
[12] 高文惠,裴红,杨桂君. 毛细管电泳在食品添加剂检测中的应用[J]. 食品与生物技术学报, 2010, 29(3): 326-330.
[13] 董亮,霍丹群,周军,等. 微流控芯片在食品安全分析中的应用进展[J]. 分析测试学报, 2015, 34(4): 483-487.
[14] 安君,李祖明. 微流控芯片技术在食品领域中的应用[J]. 微生物学杂志, 2014, 34(6): 102-106.
[15] YOON J Y, KIM B. Lab-on-a-chip pathogen sensors for food safety[J]. Sensors, 2012, 12(8): 10 713-10 741.
[16] CREVILLÉN A G, HERVÁS M, LÓPEZ M A, et al. Real sample analysis on microfluidic devices[J]. Talanta, 2007, 74(3): 342-357.
[17] HAMON M, OYARZABAL O A, HONG J W. Nanoliter/Picoliter Scale Fluidic Systems for Food Safety[M]. Advances in Nanotechnology for Agriculture, 2013: 145-165.
[18] 吴晶,黄伶慧,王远航,等. 微流控芯片电泳在食品安全与环境污染检测中的应用[J]. 分析测试学报, 2015, 34(3): 283-288.
[19] 汪美凤,胡娟,郑刚,等. 微流控芯片在食品安全分析中的应用[J]. 食品工业科技, 2011, 32(2): 401-403.
[20] 嵇正平,严长浩,陆小龙,等. 间苯三酚显色法测甲醛含量的研究[J]. 青海师专学报:自然科学, 2002, 22(5): 42-43.
[21] 国家卫生和计划生育委员会. GB 5009.226—2016食品安全国家标准 食品中过氧化氢残留量的测定[S]. 北京:中国标准出版社,2016.
[22] 刘彩,朱梦,杨秋璐,等. 新铜试剂分光光度法测定烟气中SO2[J]. 淮海工学院学报(自然科学版), 2016, 25(4): 34-37.
[23] 苑宝龙,王晓东,杨平,等. 用于农药残留现场快速检测的微流控芯片研制[J]. 食品科学, 2016, 37(2): 198-203.
[24] 叶嘉明,邵佳美,杨平,等. 用于农残快速检测的离心式微流控芯片研制[J]. 食品科学, 2017, 38(12): 292-297.
[25] 殷海荣. 光度法测定食品中甲醛含量的研究[J]. 中外医疗, 2010, 29(2): 164-165.
[26] 王瑜,孙觅,王立霞. 分光光度法测定大气降水中过氧化氢[J]. 理化检验(化学分册), 2013, 49(1): 91-93.
[27] 李海峰. 检出限几种常见计算方法的分析和比较[J]. 光谱实验室, 2010, 27(6): 2 465-2 469.
[28] 穆莉莉,沙梦梦,叶嘉明. 基于酶联免疫法检测盐酸克伦特罗的微流控系统[J]. 食品科技, 2017(11): 322-325.
[29] SUN Xian-ge, LI Bo-wei, QI An-jin, et al. Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals[J]. Talanta, 2018, 178: 426-431.
[30] RRG S, SANTOS D R, CHU V, et al. A point-of-use microfluidic device with integrated photodetector array for immunoassay multiplexing: Detection of a panel of mycotoxins in multiple samples[J]. Biosensors & Bioelectronics, 2017, 87: 823-831.
[31] BUSA L S, MOHAMMADI S, MAEKI M, et al. A competitive immunoassay system for microfluidic paper-based analytical detection of small size molecules[J]. Analyst, 2016, 141(24): 6 598-6 603.
[32] SOARES R R, NOVO P, AZEVEDO A M, et al. On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay[J]. Lab on A Chip, 2014, 14(21): 4 284-4 294.
文章导航

/