通过测定最低抑菌浓度(minimum inhibitory concentration,MIC)和最小杀菌浓度(minimum fungicidal concentration,MFC)、孢子萌发抑制率、菌丝生长抑制率确定柠檬皮中柠檬苦素对青霉的抑菌活性;结合总糖含量和蛋白质含量、碱性磷酸酶(alkaline phosphatase, AKP)活力等的变化,以及扫描电镜观察对抑菌机理进行研究。结果表明:柠檬皮中柠檬苦素对青霉有很强的抑菌活性,对青霉的MIC和MFC分别为625和2 500 μg/mL,对青霉菌丝生长和孢子萌发抑制的EC50值分别为85.618和246.755 μg/mL。柠檬苦素能在短时间内对青霉的细胞壁和细胞膜造成破坏,使胞内物质大量渗出;且柠檬苦素浓度越高,胞内物质渗出越多。扫描电镜观察也发现经柠檬苦素处理的青霉外附着渗出物;产孢数量变少,孢子变形;小梗破损、凹裂;菌丝变细,变形。
The antifungal activities of limonoids against Penicillium were investigated by determining their minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and inhibition rates of spore germination and mycelium growth. By determining the changes of total sugar content, protein content, and alkaline phosphatase (AKP) activity, together with scanning electron microscope (SEM) observation, the antifungal mechanisms of limonoids were investigated. The results showed that limonoids had strong inhibitory activities against Penicillium. The MIC and MFC of limonoids were 625 μg/mL and 2 500 μg/mL, respectively. Their EC50 values of inhibiting mycelium growth and spore germination of Penicillium were 85.618 μg/mL and 246.755 μg/mL, respectively. Limonoids could destroy the cell wall and cell membrane of Penicillium in a short time, which caused a large amount of exudation of intracellular substances. Additionally, the higher concentration of limonoids, the more exudates of Penicillium. Moreover, SEM observation also indicated that Penicillium treated with limonoids had adherent exudates. Furthermore, the number of spores of the treated Penicillium decreased, and the spores also deformed. Besides, the pedicels damaged and cracked, and the mycelia became finer and deformed.
[1] 晏敏,周宇,贺肖寒,等. 柑橘籽中柠檬苦素及类似物的生物活性研究进展[J]. 食品与发酵工业, 2018, 44(2): 290-296.
[2] 沈雯,许健. 柠檬苦素类似物及其D环内酯酶研究进展[J]. 医学研究杂志, 2010, 39(4): 111-113.
[3] SUN C D, CHEN K S, CHEN Y, et al. Contents and antioxi-dantcapaeity of limonin and nomilinin different tissues of citrus fruit of four cultivars during fruit growth and maturation [J]. Food Chemistry, 2005(4): 599-605.
[4] 董文博,王雪莹,杨洲. 柠檬苦素的性质及其生理功能的研究进展[J]. 食品与发酵科技, 2012, 48(2): 1-4.
[5] 章斌,侯小桢,邓其海,等. 柠檬苦素的抗氧化与抑菌效果研究[J]. 食品研究与开发, 2017, 38(22): 1-5.
[6] 朱春华,李菊湘,周先艳,等.柑橘果实中柠檬苦素及类似物功能活性研究进展[J]. 保鲜与加工, 2015, 15(6): 78-82.
[7] 许倩,牛希跃,张冰冰,等. 肉桂、紫苏精油对青霉和黑曲霉抑菌特性研究[J].食品研究与开发,2014,35(17):5-8.
[8] 李阳,徐晓卉,李杨,等. N~α-月桂酰-L-精氨酸乙酯盐酸盐对5种果蔬腐败菌的抑菌活性[J]. 食品与机械, 2018, 34(7): 127-131;193.
[9] 张贝,白卫东,冯卫华,等.柠檬皮中柠檬苦素的提取及其抑菌稳定性研究[J].安徽农业科学,2018,46(10):150-152.
[10] 王巍,牟德华,李丹丹. 山楂果胶寡糖的抑菌性能及机理[J]. 食品科学, 2018, 39(3): 110-116.
[11] 任先伟,魏晓璐,黄鑫,等.核桃青皮提取物抑菌活性及抑菌机理研究[J]. 食品工业科技, 2015, 36(18): 93-98.
[12] 周梦娇,万春鹏,陈金印. 柑橘绿霉病中草药高效抑菌剂的筛选及抑菌机理研究[J]. 现代食品科技, 2014, 30(3): 144-149;82.
[13] QIU M, WU C, REN G, et al. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus[J]. Food Chemistry, 2014, 155(15): 105-111.
[14] 韩亚珊. 食品化学实验指导[M]. 北京:中国农业出版社, 1996.
[15] 龚佑文,张小娟,王晓宁,等. 花椒和川黄柏精油对水稻纹枯病菌形态和细胞壁降解酶的影响[J]. 天然产物研究与开发, 2008(2): 193-197.
[16] 蓝蔚青,车旭,谢晶,等. 复合生物保鲜剂对荧光假单胞菌的抑菌活性及作用机理[J]. 中国食品学报, 2016, 16(8): 159-165.
[17] 马欢欢,林洋,吕欣然,等. 96孔板法筛选抗黑曲霉性乳酸菌及抑菌机理研究[J]. 食品工业科技, 2017, 38(12): 171-175.
[18] 王文婧,殷文政,冀昌龙. 产抑菌活性物质菌株的筛选及其抑菌机理的研究[J]. 现代食品科技, 2016, 32(12): 151-157.
[19] 蒋慧亮,李学英,杨宪时,等. 生物保鲜剂对鱼类腐败菌抑菌效果比较及抑菌机理研究[J]. 食品科学, 2012, 33(23): 31-35.
[20] LONG M, WANG J, ZHUANG H, et al. Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms: Salmonella typhimurium and Listeria monocytogenes[J]. Food Control, 2014, 39: 68-74.
[21] 许女,史改玲,张浩,等.植物乳杆菌KF1对奶牛乳房炎金黄色葡萄球菌的抑菌机制[J]. 中国食品学报, 2016, 16(10): 19-27.
[22] PRAMANIK K, GHOSH P K, RAY S, et al. An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa[J]. Journal of Genetic Engineering and Biotechnology, 2017, 15(2): 527-537.