研究辣椒籽抗菌肽对玉米中分离的致腐菌(黄曲霉)的作用方式,包括最低抑菌浓度(minimum inhibitory concentration, MIC)、以及对黄曲霉生长、孢子萌发、养分吸收及细胞膜透性的影响。辣椒籽抗菌肽能够抑制黄曲霉生长,在1MIC浓度下萌发率降至18.51%,浓度达到4MIC时能完全抑制黄曲霉孢子的萌发。在黄曲霉菌快速生长但还未产生孢子的时期(24 h)加入抗菌肽,能有效抑制孢子的产生。在黄曲霉生长的不同阶段(0、24、48 h)加入辣椒籽抗菌肽,其利用培养基中营养物质能力显著降低;通过核酸染料Sytox Green(SG)结合荧光显微镜来研究辣椒籽抗菌肽对黄曲霉的细胞通透性,结果显示,抗菌肽处理后黄曲霉菌丝体细胞内出现荧光,说明细胞膜受到损伤导致通透性发生了改变。
In order to clarify the inhibition mechanisms of pepper seed antifungal peptide (AMP) against corn- mildewing Aspergillus flavus, its minimum inhibitory concentration (MIC) and its effects on growth, spore germination, nutrient uptake, and cell membrane permeability of A. flavus were studied. The results showed that pepper seed AMP could inhibit the growth of A. flavus with the MIC of 156.25 μg/mL. At one-fold MIC, the germination rates of spores decreased to 18.51% and were completely inhibited at four-fold MIC. When AMP was added during the vegetative growth (in 24 h) of A. flavus, it could effectively inhibit spore formation. When AMP was added at different growth stages (0, 24, 48 h), it significantly reduced the ability of A. flavus to absorb nutrients from the medium. Sytox Green (SG) combined with a fluorescent microscope showed that the mycelium of AMP-treated A. flavus showed fluorescence, indicated that the cell membrane of A. flavus was damaged and therefore its permeability changed.
[1] ROCHA M E B, FREIRE F C O, MAIA F E F, et al. Rondina.Mycotoxins and their effects on human and animal health[J]. Food Control, 2014(36): 159-165.
[2] TRUCKSES M W, DOMBRINK-KURTZMAN M A, TOURNAST V H,et al. Occurrence of aflatoxins and fumonisins in lncaparina from Guatemala[J]. Food Additation Contamination, 2002, 19(7): 671-675.
[3] BENKO-ISEPPON A M, LINS GALDINO S, CALSA T, et al. Overview on plant antimicrobial peptides[J]. Curr Prot Pept Sci,2010,11(3):181-188.
[4] RAUSHER M D. Co-evolution and plant resistance to natural enemies[J]. Nature, 2001, 411(6 839):857-864.
[5] ALBRECHT L J, MERRES J, PUFE T, et al. Antimicrobial peptides: Multifunctional drugs for different applications[J]. Polymers,2012, 4(1):539-560.
[6] AUVYNET C, ROSENSTEIN Y. Multifunctional host defense peptides: Antimicrobial peptides, the small yet big players in innate and adaptive immunity[J]. FEBS J, 2009, 276(22):6 497-6 508.
[7] 宁娜. 辣椒籽的油脂和蛋白质研究[D]. 重庆:西南大学, 2011.
[8] 马燕,徐贞贞,邹辉,等. 8个品种辣椒籽成分分析与比较[J]. 食品科学, 2017, 38(22):178-183.
[9] 王德培,李可乐,王亚军,等. 解淀粉芽孢杆菌BI2抗真菌活性物质的分离纯化及特性分析[J]. 食品工业科技, 2013, 34(9):78-81.
[10] THEVISSEN K, TERRAS F R, BROEKAERT W F. Permeabilization of fungal membranes by plant defensins inhibits fungal growth [J]. Applied & Environmental Microbiology, 1999, 65(12):5 451-5 458.
[11] VAN DWNL, LAY F T, ANDERSON M A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae[J]. Journal of Biological Chemistry, 2008, 283(21):14 445-14 452.
[12] ZHANG B, DONG C, SHANG Q, et al. New insights into membrane activeaction in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L.[J]. Biochemica Et Biophysica Acta, 2013,1 828(9):2 230-2 237.
[13] MUNOZ A, LOPEZ-GARCIA B, MARCOS J F. Studies on the mode of action of the antifungal hexapeptide PAF26[J]. Agents Chemother, 2006,50(11):3 847-3 855.
[14] YAO G, YUE Y, FU Y, et al. Exploration of the regulatory mechanism of secondary metabolism by comparative transcriptomics in Aspergillus flavus[J]. Frontiers in Microbiology, 2018, 9: 1 568.
[15] TAGHIZADEH-ARMAKI M, HEDAYATI M T, ANSARI S, et al. Genetic diversity and in vitro antifungal susceptibility of 200 clinical and environmental Aspergillus flavus isolates[J]. Antimicrobial Agents & Chemotherapy, 2017, 61(5): 4-17.
[16] RAJASEKARAN K, SAYLER R J, SICKLER C M, et al. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182[J]. Plant Science, 2018, 270:150-156.
[17] MACHADO R J, ESTRELA A B, NASCIMENTO A K, et al. Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: Structure, cytotoxicity and antimicrobial activity[J]. Toxicon, 2016, 119:362-370.
[18] TIAN J, WANG Y, LU Z, et al. Perillaldehyde, a Promising antifungal agent used in food preservation, triggers apoptosis through a metacaspase-dependent pathway in Aspergillus flavus[J]. Journal of Agricultural & Food Chemistry, 2016, 64(39):7 404-7 413.
[19] 谢小梅,方建茹,许杨. 肉桂醛、柠檬醛抗黄曲霉作用的研究[J]. 食品科学, 2004, 25(9):32-34.
[20] 张新虎,何静,沈慧敏. 苍耳提取物对番茄灰霉病菌的抑制作用及抑菌机理初探[J]. 草业学报, 2008, 17(3):99-104.
[21] 黄现青. Bacillus subtilis fmbJ产生的脂肽抗微生物效果及安全性评价[D]. 南京:南京农业大学, 2006.
[22] 罗曼,蒋立科,吴子健. 柠檬醛对黄曲霉质膜损伤机制的初步研究[J]. 微生物学报, 2001, 41(6):723-730.
[23] 罗曼,蒋立科. 柠檬醛损伤黄曲霉线粒体生化机理的研究[J]. 微生物学报, 2002, 42(2):226-231.
[24] BESSON F, PEYPOUX F, MICHEL G, et al. Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L. and of their derivatives; inhibition of this antifungal activity by lipid antagonists[J]. Journal of Antibiotics, 1979, 32(8):828-833.
[25] VOLPON L, BESSON F, LANCELIN J M. NMR structure of active and inactive forms of the sterol-dependent antifungal antibiotic bacillomycin L.[J]. Febs Journal, 1999, 264(1):200-210.
[26] 戴向荣,蒋立科,罗曼. 肉桂醛抑制黄曲霉机理初探[J]. 食品科学, 2008, 29(1):36-40.