研究报告

解脂亚罗酵母对棒曲霉素降解条件的筛选及部分机理研究

  • 胡慧敏 ,
  • 宗元元 ,
  • 王振宇 ,
  • 张国军 ,
  • 毕阳
展开
  • (甘肃农业大学 食品科学与工程学院,甘肃 兰州,730070)
硕士研究生(毕阳教授为通讯作者,E-mail:beyang62@163.com)。

收稿日期: 2018-10-26

  修回日期: 2018-12-27

  网络出版日期: 2019-05-14

基金资助

国家重点研发计划项目(2016YFD0400902);甘肃省高等学校科研项目(2016B-043);国家自然科学基金(地区科学基金项目)(31660476)

Screening and partial mechanism analysis of patulin degradation conditions by Yarrowia lipolytica

  • HU Huimin ,
  • ZONG Yuanyuan ,
  • WANG Zhenyu ,
  • ZHANG Guojun ,
  • BI Yang
Expand
  • (College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China)

Received date: 2018-10-26

  Revised date: 2018-12-27

  Online published: 2019-05-14

摘要

通过解脂亚罗酵母(Yarrowia lipolytica)与棒曲霉素(patulin, pat)共培养,用高效液相色谱法(HPLC)测定棒曲霉素含量,研究该酵母对棒曲霉素的去除效果,用响应面法筛选最佳脱毒条件,并初步探讨脱毒机制。结果表明,Y. lipolytica能有效脱除棒曲霉素,脱毒效果受温度、pH值、棒曲霉素及酵母初始浓度和酵母活性的影响。在pH值4.6、温度27.5 ℃和酵母初始浓度1×1010 CFU/mL条件下,该酵母对棒曲霉素降解效果最佳,脱毒率可达100%。棒曲霉素对Y. lipolytica的生长具有一定的抑制,但整体抑制程度不大。棒曲霉素初始浓度越高,酵母的脱毒率就越低。酵母初始浓度越高,酵母的脱毒效果越好。活酵母对棒曲霉素的脱毒效果显著高于热致死酵母。此外,酵母胞内物质对棒曲霉素有显著的脱毒作用,而培养上清液对棒曲霉素没有作用。综上所述,Y. lipolytica可有效去除棒曲霉素,生物降解是其主要的作用机制。

本文引用格式

胡慧敏 , 宗元元 , 王振宇 , 张国军 , 毕阳 . 解脂亚罗酵母对棒曲霉素降解条件的筛选及部分机理研究[J]. 食品与发酵工业, 2019 , 45(7) : 37 -44 . DOI: 10.13995/j.cnki.11-1802/ts.019164

Abstract

Yarrowia lipolytica was co-cultured with patulin. The detoxification effects of Y. lipolytica were investigated by measuring the concentrations of patulin by high performance liquid chromatography (HPLC). Response surface method was used to screen the optimal detoxification conditions. Besides, the mechanisms of detoxification were also examined. The results showed that Y. lipolytica effectively degraded patulin. Its detoxification effects were affected by temperature, pH, initial concentrations of patulin and yeast, as well as yeast activity. At pH=4.6 and 27.5 ℃ with the initial concentration of yeast being 1×1010 CFU/mL, the yeast exhibited the optimal degradation effect on patulin, as the degradation rate reached 100%. Patulin showed certain inhibitory effects on the growth of Y. lipolytica. The higher the initial concentration of patulin, the lower the detoxification rate of yeast. The higher the initial concentration of yeast, the better the detoxification effect. The detoxification effects of living yeast were significantly higher than that of heat-killed ones. Furthermore, its intracellular proteins showed significant detoxification effects than cell culture supernatant. Therefore, it is suggested that Y. lipolytica can effectively degrade patulin, and the major mechanism is by biodegradation.

参考文献

[1] VARGA J, DUE M, FRISVAD J C, et al. Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data[J].Studies in Mycology,2007,59(1):89-106.
[2] MURPHY P A, HENDRICH S, LANDGREN C, et al. Food mycotoxins: an update[J].Journal of Food Science,2006,71(5):51-65.
[3] YANG J, LI J, JIANG Y, et al. Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products[J].Critical Reviews in Food Science and Nutrition,2014,54(1):64-83.
[4] ZHOU S M, JIANG L P, GENG C Y, et al. Patulin-induced oxidative DNA damage and p53 modulation in HepG2 cells[J].Toxicon,2010,55(2):390-395.
[5] QUINTELA S, VILLARAN C, LÓPEZ D E, ARMENTIA I, et al. Ochratoxin A removal in wine: A review[J].Food Control,2013,30(2):439-445.
[6] REDDY K R, SPADARO D, GULLINO M L, et al. Potential of two Metschnikowia pulcherrima (yeast) strains for in vitro biodegradation of patulin[J].Journal of Food Protection,2011,74(1):154-156.
[7] RAFFAELLO C, LUISA M, ROSA D, et al. Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11[J].Journal of Agricultural and Food Chemistry,2011,59(21):11 571-11 578.
[8] COELHO A R, CELLI M G, ONO E Y S, et al. Penicillium expansum versus antagonist yeasts and patulin degradation in vitro[J].Brazilian Archives of Biology and Technology,2007,50(7):725-733.
[9] COELHO A, CELLI M, SATAQUEONO E, et al. Patulin biodegradation using Pichia ohmeri and Saccharomyces cerevisiae[J].World Mycotoxin Journal,2008,34(1):325-331.
[10] CHI Z, CHI Z, ZHANG T, et al. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications[J]. Biotechnology Advances, 2009, 27(3):236-255.
[11] GRENFELL-LEE D, ZELLER S, CARDOSO R, et al. The safety of β-carotene from Yarrowia lipolytica[J].Food and Chemical Toxicology,2014,65:1-11.
[12] 王峻峻, 张红印,杨其亚,等. 降解赭曲霉毒素A菌株的筛选及其鉴定[J].食品科学,2014,35(21):154-158.
[13] 张婕, 周雅涵,闫师杰,等. 柠檬形克勒克酵母复合CaCl2处理对采后黄花梨果实轮纹病的控制[J].食品科学,2014,35(12):228-232.
[14] DONG X, JIANG W, LI C, et al. Patulin biodegradation by marine yeast Kodameae ohmeri[J].Food Additives and Contaminants,2015,32(3):352-360.
[15] CHEN Y, PENG H M, WANG X, et al. Biodegradation mechanisms of patulin in Candida guilliermondii: An iTRAQ-Based proteomic analysis[J].Toxins,2017,9(2):48-60.
[16] ZHU R, FEUSSNER K, WU T, et al. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum[J].Food Chemistry,2015,179:1-5.
[17] ZONGY Y, LIB Q, TIAN S P. Effects of carbon, nitrogen and ambient pH on patulin production and related geneexpression in Penicillium expansum[J].International Journal of Food Microbiology,2015,206(2):102-108.
[18] NICAUD J M. Yarrowia lipolytica[J].Yeast,2012,29(10):409-418.
[19] MADZAK C, GAILLARDIN C, BECKERICH J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica : a review[J].Journal of Biotechnology,2004,109(1):63-81.
[20] ABRUNHOSA L, SANTOS L, VENNCIO A. Degradation of ochratoxin A by proteases and by a crude enzyme of Aspergillusniger[J].Food Biotechnology,2006,20(3):231-242.
[21] DUTTON M F, WESTLAKE K, ANDERSON M S. The interaction between additives, yeast and patulin production in grass silage[J].Mycopathologia,1984,87(1-2):29-33.
[22] SUMBU Z L, THONART P, BECHET J. Action of patulin on a yeast[J].Applied and Environmental Microbiology,1983,45(1):110-115.
[23] PAPP G, HORVÓTH E, MIKE N, et al. Regulation of patulin-induced oxidative stress processes in the fission yeast Schizosaccharomyces pombe[J]. Food and Chemical Toxicology, 2012, 50(10):3 792-3 798.
[24] FLIEGE R, METZLER M. Electrophilic properties of patulin. N-acetylcysteine and glutathione adducts[J].Chemical Research in Toxicology,2000,13(5):373-381.
[25] FLIEGE R, METZLER M. Electrophilic properties of patulin. Adduct structures and reaction pathways with 4-bromothiophenol and other model nucleophiles[J].Chemical Research in Toxicology,2000,13(5):363-372.
[26] HORVÓTH E, PAPP G, BELÓGYI J, et al. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe[J].Food and Chemical Toxicology,2010,48(7):1 898-1 904.
[27] BARHOUMI R, BURGHARDT R C. Kinetic analysis of the chronology of patulin and gossypol-induced cytotoxicity in vitro[J].1996,30(2):290-297.
[28] LIU B H, WU T S, YU F Y, et al. Induction of oxidative stress response by the mycotoxin patulin in mammalian cells[J].Toxicological Sciences,2007,95(2):340-347.
[29] 龚雪, 田丰伟,翟齐啸,等. 高效降解展青霉素乳酸菌的分离鉴定及去除机理研究[J].食品工业科技,2015,36(22):179-183.
[30] MOAKE M M, PADILLA-ZAKOUR O I, WOROBO R W. Comprehensive review of patulin control methods in foods[J].Comprehensive Reviews in Food Science and Food Safety,2010,4(1):8-21.
[31] YUE T, DONG Q, GUO C, et al. Reducing patulin contamination in apple juice by using inactive yeast[J].Journal of Food Protection,2011,74(1):149-153.
[32] GUO C, YUAN Y, YUE T, et al. Binding mechanism of patulin to heat‐treated yeast cell[J].Letters in Applied Microbiology,2012,55(6):453-459.
[33] TOPCU A, BULAT T, WISHAH R, et al. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains[J].International Journal of Food Microbiology,2010,139(3):202-205.
[34] HATAB S, YUE T, MOHAMAD O. Removal of patulin from apple juice using inactivated lactic acid bacteria[J].Journal of Applied Microbiology,2012,112(5):892-899.
[35] IANIRI G, IDNURM A, WRIGHT S A, et al. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin[J].Applied and Environmental Microbiology,2013,79(9):3 101-3 115.
[36] ZHENG X, YANG Q, ZHANG H, et al. The possible mechanisms involved in degradation of patulin by Pichia caribbica [J].Toxins,2016,8(10):289-305.
[37] 王学锋, 苑伟,刘延琳. 培养基的主要成分对优选酿酒酵母生物量的影响[J].中国酿造,2010,29(8):18-21.
文章导航

/