麦芽四糖淀粉酶可水解淀粉或麦芽糊精生成麦芽四糖,在食品领域有着广泛应用。为降低生产成本,对前期构建的生产麦芽四糖淀粉酶的重组枯草芽孢杆菌进行发酵优化。通过对培养基的氮源和碳源进行优化,以5%的接种量,在33 ℃、200 r/min条件下发酵48 h,发现以25 g/L豆粕粉和25 g/L工业蛋白胨为氮源,5 g/L甘油为碳源时,重组酶酶活力最高可达236 U/mL。利用发酵所得重组麦芽四糖淀粉酶制备麦芽四糖并进行酶反应条件优化,使用高效液相色谱检测产物含量。发现当酶转化反应温度为50 ℃,反应pH为7.0,加酶量为30 U/g底物,底物麦芽糊精的质量浓度为250 g/L时,反应12 h,麦芽四糖转化率可达73.2%,为降低生产成本和工业制备麦芽四糖提供了理论依据。
Maltotetraose amylase hydrolyzes starch or maltodextrin to form maltotetraose. In order to reduce costs, the fermentation condition of previously constructed recombinant Bacillus subtilis that produces maltotetraose amylase was optimized by optimizing the nitrogen and carbon sources of the medium. It was found that when the medium contained 25 g/L soybean meal, 25 g/L industrial peptone, and 5 g/L glycerol, fermented at 33 ℃ and 200 r/min for 48 h and at a seeding rate of 5%, the activity of fermented maltotetraose amylase was up to 236 U/mL. Furthermore, maltotetraose was prepared with the enzyme and the reaction condition was optimized, and the products were detected by HPLC. The results showed that when the reaction temperature was 50 ℃, the reaction pH was 7.0, the amount of enzyme was 30 U/g substrate, the concentration of substrate (maltodextrin) was 250 g/L, and reacted for 12 h, the conversion rate of maltotetraose reached 73.2%. This study provides a theoretical basis for reducing production costs and preparing maltotetraose at an industrial scale.
[1] ROBYT J F, ACKERMAN R J. Isolation,purification and characterization of a maltotetraose-producing amylase from Pseudomonas stuzeri[J]. Archives of Biochemistry and Biophysics, 1971, 145(1): 105-114.
[2] SAKANO Y, KASHIWAGI Y, KOBAYASHI T, et al. Purification and properties of an exo-α-amylase from Pseudomonas stutzeri[J]. Agricultural and Biological Chemistry, 1982, 46: 639-646.
[3] SAKANO Y, KASHIWAGI Y, KOBAYASHI T. Purification of a maltotetraose-forming exo-amylase of Pseudomonas stutzeri: Two-forms of the amylase and their enzymatic properties[J]. Agricultural and Biological Chemistry, 1982,46(3):639-646
[4] FUJITA M, TORIGOE K, NAKADA T, et al. Cloning and nucleotide sequence of the gene (amyP) for maltotetraose-forming amylase from Pseudomonas stutzeri MO-19[J]. Journal of Bacteriology, 1989, 171(3): 1 333-1 339.
[5] FOGARTY W M, KELLY C T, BOURKE A C, et al. Extracellular maltotetraose-forming amylase of Pseudomonas sp. IMD 353[J]. Biotechnology Letters, 1994, 16(5): 473-478.
[6] MAALEJ H, HMIDET N, GHORBEL-BELLAAJ O, et al. Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22[J]. Biotechnology and Bioprocess Engineering, 2013, 18(5): 878-887.
[7] KOBAYASHI S, OKEMOTO H, HARA K, et al. Preparation and some properties of a novel maltotetraose-forming enzyme of Pseudomonas saccharophila[J]. Journal of the Japanese Society of Starch Science, 1991, 38(1): 27-36.
[8] SCHMIDT J, JOHN M. Starch metabolism in Pseudomonas stutzeri. I. Studies on maltotetraose-forming amylase[J]. Biochimica et Biophysica Acta, 1979, 566(1): 88-99.
[9] ZHOU Jianhua, TAKANO T, KOBAYASHI S. Cloning of exo-maltotetraohydrolase gene from Pseudomonas saccharophila in Escherichia coli[J]. Agricultural and Biological Chemistry, 1989, 53(1): 301-302.
[10] MORISHITA Y, HASEGAWA K, MATSUURA Y, et al. Crystal structure of a maltotetraose-forming exo-amylase from Pseudomonas stutzeri[J]. Journal of Molecular Biology, 1997, 267(3): 661-672.
[11] MEZAKI Y, KATSUYA Y, KUBOTA M, et al. Crystallization and structural analysis of inact maltotetraose-forming exo-amylase from Pseudomonas stutzeri[J]. Bioscience, Biotechnology, and Biochemistry, 2001, 65(1): 222-225.
[12] ZHOU Jianhua, BABA T, TAKANO T, et al. Properties of the enzyme expressed by the Pseudomonas saccharophila maltotetraohydrolase gene(mta) in Escherichia coli[J]. Carbohydrate Research, 1992, 223(2): 255-261.
[13] BAE W, LEE S H, YOO S H, et al. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver:Dough rheology and baking performance[J]. Journal of Food Science, 2014, 79(8): 1 535-1 540.
[14] JIA Xianbo, GUO Yonghua, LIN Xinjian, et al. Fusion of a family 20 carbohydrate-binding module (CBM20) with cyclodextrin glycosyltransferase of Geobacillus sp. CHB1 improves catalytic efficiency[J]. Journal of Basic Microbiology, 2017, 57(6): 471-480.
[15] SHIVLATA L, SATYANARAYANA T. Characteristics of raw starch-digesting α-amylase of Streptomyces badius DB-1 with transglycosylation activity and its applications[J]. Applied Biochemistry and Biotechnology, 2017, 181(4): 1 283-1 303.
[16] VAJRAVIJAYAN S, PLETNEVA N. Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes[J]. International Journal of Biological Macromolecules, 2018, 113: 329-337.
[17] 赵云. 麦芽四糖淀粉酶基因克隆表达及活性研究[D]. 上海:华东师范大学, 2013.
[18] 韦云萍. 运用体外分子进化的方法提高麦芽四糖淀粉酶活性的研究[D]. 上海:华东师范大学, 2014.
[19] 赵云, 朱蓓霖,汪正华,等. 麦芽四糖淀粉酶基因优化表达及酶学性质分析[J]. 中国生物工程杂志, 2013,33(5): 100-106.
[20] 朱明. 用麦芽四糖淀粉酶生产麦芽四糖[J]. 无锡轻工大学学报, 1997(4): 36-39.
[21] 朱明, 吴嘉根. 麦芽四糖的性质及在食品中的应用[J]. 冷饮与速冻食品工业, 1999,5(4): 23-24.
[22] 韦云萍, 赵云,张金龙,等. 嗜糖假单胞菌麦芽四糖淀粉酶的枯草芽孢杆菌表达及酶学性质分析[J]. 食品与发酵工业, 2014, 40(5): 70-76.
[23] 唐玉, 孙俊良,梁新红,等. 麦芽四糖研究新进展[J]. 河南科技学院学报, 2013, 41(4): 14-16;21.
[24] 钱莹, 段钢. 新型麦芽四糖酶及其应用[J]. 食品与生物技术学报, 2013, 32(1): 100-104.
[25] 信成夫, 景文利,于丽,等. 麦芽四糖生产工艺的研究[J]. 中国食品添加剂, 2016(10): 149-153.