研究报告

生物素及膜偶联间歇透析发酵对黄色短杆菌生产L-亮氨酸的影响

  • 张玉富 ,
  • 熊海波 ,
  • 徐庆阳 ,
  • 陈宁
展开
  • 1(代谢控制发酵技术国家地方联合工程实验室(天津科技大学),天津,300457)
    2(天津市氨基酸高效绿色制造工程实验室(天津科技大学),天津,300457)
    3(天津科技大学 生物工程学院,天津,300457)
博士研究生

收稿日期: 2018-10-23

  网络出版日期: 2019-06-06

基金资助

天津市科技攻关计划(14CZDSY00015)

Effects of biotin and membrane coupled intermittent dialysis fermentation onthe production of L-leucine by Brevibacterium flavum

  • ZHANG Yufu ,
  • XIONG Haibo ,
  • XU Qingyang ,
  • CHEN Ning
Expand
  • 1(National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China)
    2(Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin 300457, China)
    3(College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)

Received date: 2018-10-23

  Online published: 2019-06-06

摘要

生物素作为微生物的生长因子,对生长速率、细胞膜通透性、代谢产物的生成等方面具有重要作用。为提高黄色短杆菌产L-亮氨酸产量,降低副产物生成,在30 L发酵罐水平研究了在培养基中添加20、50、80、120 μg/L四种不同质量浓度生物素,对黄色短杆菌产L-亮氨酸的影响。结果表明:培养基中添加50 μg/L生物素,黄色短杆菌发酵44 h,L-亮氨酸的产量最高,达到60 g/L,糖酸转化率为22%,副产物L-丙氨酸的质量浓度为8 g/L。在最适生物素浓度下,发酵36 h后,采用膜偶联间歇透析发酵工艺,发酵周期延长至56 h,L-亮氨酸的糖酸转化率为25%,较普通发酵工艺约提高13.6%,副产物L-丙氨酸的浓度降低约71.3%,L-亮氨酸的总产量提高了16.7%。研究结果对提高糖利用率、降低副产物、提高生产效率等方面具有重要意义。

本文引用格式

张玉富 , 熊海波 , 徐庆阳 , 陈宁 . 生物素及膜偶联间歇透析发酵对黄色短杆菌生产L-亮氨酸的影响[J]. 食品与发酵工业, 2019 , 45(9) : 15 -20 . DOI: 10.13995/j.cnki.11-1802/ts.019138

Abstract

As a growth factor of microorganisms, biotin plays important roles in growth rate, cell membrane permeability, and metabolites production etc. In order to increase the yield of L-leucine produced by Brevibacterium flavum and reduce the formation of by-products, different concentrations of biotin (20, 50, 80, 120 μg/L) were added to the medium in a 30 L bioreactor. The results showed that the yield of L-leucine produced by B. flavum reached the highest (60 g/L) in the medium that contained 50 μg/L biotin and fermented for 44 h. Moreover, the glucose conversion rate was 22% and the concentration of by-product L-alanine was 8 g/L. At the optimal biotin concentration, the membrane coupled intermittent dialysis fermentation was used after 36 h fermentation, and the fermentation period was extended to 56 h. As a result, the glucose conversion rate reached 25%, which was about 13.6% higher than that of common fermentation process, and the concentration of L-alanine was about 71.3% lower. Furthermore, the production of L-leucine increased by 16.7%. Overall, the results are of great significance to improve glucose utilization, reduce by-products, and improve the production of L-leucine.

参考文献

[1] 孟仕平, 丁玉,黄姗姗. L-亮氨酸的生理功能和分离纯化技术[J]. 食品工业科技, 2011, 32(4): 397-400.
[2] VOGT M, HAAS S, KLAFFL S, et al. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction [J]. Metabolic Engineering, 2014, 22(3): 40-52.
[3] PARK J H, LEE S Y. Fermentative production of branched chain amino acids: a focus on metabolic engineering [J]. Applied Microbiology & Biotechnology, 2010, 85(3): 491-506.
[4] LAYMAN D K. The role of leucine in weight loss diets and glucose homeostasis [J]. Journal of Nutrition, 2003, 133(1): 261S.
[5] ROTTH USER B, KRAUS G, SCHMIDT P C. Optimization of an effervescent tablet formulation containing spray dried L-leucine and polyethylene glycol 6000 as lubricants using a central composite design [J]. European Journal of Pharmaceutics & Biopharmaceutics, 1998, 46(1): 85.
[6] 张伟国, 程功. 微生物发酵法生产L-亮氨酸的研究进展[J]. 食品与生物技术学报, 2015, 34(2): 113-120.
[7] D'ESTE M, ALVARADO-MORALES M, ANGELIDAKI I. Amino acids production focusing on fermentation technologies-A review [J]. Biotechnology Advances, 2018, 36(1): 14-25.
[8] MCMAHON R J. Biotin in metabolism and molecular biology [J]. Annual Review of Nutrition, 2002, 22(1): 221-239.
[9] LI Y, SUN L, FENG J, et al. Efficient production of alpha-ketoglutarate in the gdh deleted Corynebacterium glutamicum by novel double-phase pH and biotin control strategy [J]. Bioprocess And Biosystems Engineering, 2016, 39(6): 967-976.
[10] WEN J, XIAO Y, LIU T, et al. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum [J]. Biotechnology for Biofuels, 2018, 11(1): 132.
[11] SHIIO I, OTSUKA S I, KATSUYA N. Effect of biotin on the bacterial formation of glutamic acid. II. Metabolism of glucose [J]. Journal of Biochemistry, 1962, 52(1): 108-116.
[12] EGGELING L, KRUMBACH K, SAHM H. L-glutamate efflux with Corynebacterium glutamicum: why is penicillin treatment or Tween addition doing the same?[J]. Journal of Molecular Microbiology & Biotechnology, 2001, 3(1): 67-68.
[13] TAKINAMI K, YOSHII H, TSURI H, et al. Biochemical effects of fatty acid and its derivatives on L-glutamic acid fermentation. 3. Biotin-Tween 60 relationship in accumulation of L-glutamic acid and growth of Brevibacterium lactofermentum [J]. Agric Biol Chem, 1965, 29: 351-359.
[14] NARA T, SAMEJIMA H, KINOSHITA S. Effect of penicillin on amino acid fermentation [J]. Journal of the Agricultural Chemical Society of Japan, 1964, 28(2): 120-124.
[15] RADMACHER E, STANSEN K C, BESRA G S, et al. Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum [J]. Microbiology, 2005, 151(5): 1 359-1 368.
[16] DELAUNAY S, GOURDON P, LAPUJADE P, et al. An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum [J]. Enzyme And Microbial Technology, 1999, 25(8-9): 762-768.
[17] IKEDA M, MIYAMOTO A, MUTOH S, et al. Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum Strains[J]. Applied and Environmental Microbiology, 2013, 79(15): 4 586-4 594.
[18] JENS S, PETRA P W, CORINNA S K, et al. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum [J]. BMC Microbiology, 2012, 12(1): 1-10.
[19] 马雷, 郑梦鸽,石拓,等. 谷氨酸棒杆菌发酵过程中亮氨酸浓度近红外模型的建立[J]. 生物技术通讯, 2016, 27(4): 501-506.
[20] 徐庆阳, 马雷,程立坤,等. 葡萄糖流加方式对黄色短杆菌生产L-亮氨酸的影响[J]. 食品与发酵工业, 2010, 36(8): 1-5.
[21] 户红通, 徐达,徐庆阳,等. 谷氨酸发酵过程膜偶联间歇透析发酵工艺研究[J]. 食品与发酵科技, 2018, 54(1): 9-13.
[22] 薛晓明, 吴振强,吴清平,等. 添加ATP和生物素优化ε-聚赖氨酸发酵的研究[J]. 中国酿造, 2012, 31(1): 72-76.
[23] CAO Y, DUAN Z, SHI Z. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum [J]. World Journal of Microbiology & Biotechnology, 2014, 30(2): 461-468.
[24] HASHIMOTO K, KAWASAKI H, AKAZAWA K, et al. Changes in composition and content of mycolic acids in glutamate-overproducing Corynebacterium glutamicum [J]. Bioscience Biotechnology And Biochemistry, 2006, 70(1): 22-30.
[25] TAKINAMI K, YAMADA Y, OKADA H. Biochemical effects of fatty acid and its derivatives on L-glutamic acid fermentation [J]. Journal of the Agricultural Chemical Society of Japan, 2008, 30(7): 674-682.
[26] 谢希贤, 杜军,刘淑云,等. L-亮氨酸高产菌TGL8207的定向选育及其发酵过程研究[J]. 中国食品学报, 2009, 9(2): 29-33.
[27] 刘镇瑜, 刘子强,蔡萌萌,等. L-色氨酸发酵过程偶联膜分离提取工艺研究[J]. 生物技术通讯, 2017, 28(3): 313-318.
[28] 陈宁. 氨基酸工艺学(高校教材) [M]. 北京:中国轻工业出版社, 2007.
文章导航

/