为筛选出可高效利用棉籽糖的菌种并对其酶学性质进行研究,采用高效液相色谱法测定了棉籽糖含量,平板计数法测定菌种生长量,pNPG法测定α-半乳糖苷酶酶活。结果显示,该实验筛选出屎肠球菌、粪肠球菌和凝结芽孢杆菌3株可以高效利用棉籽糖的菌种,发酵后培养基中棉籽糖剩余含量分别为0、0.36%和1.05%(质量分数)。屎肠球菌α-半乳糖苷酶最适pH值为5,最适温度为45 ℃。粪肠球菌α-半乳糖苷酶最适pH为5,最适温度为50 ℃。凝结芽孢杆菌α-半乳糖苷酶最适pH为8,最适温度为45 ℃。所产α-半乳糖苷酶具有较为稳定的酶学性质,可为今后饲料和食品中棉籽糖的去除提供研究方向。
This study aimed to screen strains that could efficiently utilize raffinose and to illustrate their enzymatic characteristics. The raffinose content, strain growth, and α-galactosidase activity were measured. The isolates that could efficiently utilize raffinose belonged to Enterococcus faecium, Enterococcus faecalis, and Bacillus coagulans. The residual contents of raffinose in the medium after fermenting with E. faecium, E. faecalis, and B. coagulans were 0, 0.36%, and 1.05%, respectively. The optimum pH of the α-galactosidase from E. faecium, E. faecalis and B. coagulans were 5, 5, and 8, respectively, and the optimum temperatures were 45 ℃, 50 ℃ and 45 ℃, respectively. This study provides research directions for removing raffinose from feeds and foods in the future.
[1] 姚琨,李兆勇.发酵豆粕生产工艺的最新研究进展[J].饲料工业,2011,32(23):65-70.
[2] 方华,秀春源,银红娟.高赖氨酸发酵豆粕发酵条件的优化[J].粮食与饲料工业,2008(3):31-32.
[3] 周冬丽,宋伟光,郭文峰,等.棉籽低聚糖—棉籽糖研究概况[J].粮食与油脂,2010(12):39-41.
[4] KATROLIA P,RAJASHEKHARA E,YAN Q,et al. Biotechnological potential of microbial α-galactosidases[J].Critical Reviews in Biotechnology, 2014, 34(4):307-317.
[5] 邓春,易弋,李平,等.α-半乳糖苷酶的研究进展[J].食品工业,2016,37(2):255-260.
[6] ROOPASHRI A N.VARADARAJ M C. Hydrolysis of flatulence causing oligosaccharides by α-d-galactosidase of a probiotic Lactobacillus plantarum MTCC 5422 in selected legume flours and elaboration of probiotic attributes in soy-based fermented product[J].European Food Research and Technology, 2014, 239(1):99-115.
[7] MALGAS S,VAN DYK J S,PLETSCHKE B I.A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase[J].World Journal of Microbiology and Biotechnology, 2015, 31(8):1 167-1 175.
[8] BAKUNINA I Y,BALABANOVA L A,PENNACCHIO A,et al. Hooked on α-d-galactosidases: From biomedicine to enzymatic synthesis[J].Critical Reviews in Biotechnology,2016,36(2):233-245.
[9] GONG W,XU L,GU G,et al. Efficient and regioselective synthesis of globotriose by a novel α-galactosidase from Bacteroides fragilis[J].Appl Microbiol Biotechnol,2016,100(15):6 693-6 702.
[10] CAROLA SCHRÖDER, JANZER V A, SCHIRRMACHER G,et al. Characterization of two novel heat-active α-galactosidases from thermophilic bacteria[J]. Extremophiles, 2016, 21(1):1-10.
[11] ZHOU J,LU Q,ZHANG R,et al. Characterization of two glycoside hydrolase family 36 α-galactosidases:Novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity[J].Food Chemistry,2016,194:156-166.
[12] ZHOU J, LIU Y, LU Q, et al. Characterization of a glycoside hydrolase family 27 α-galactosidase from pontibacter reveals its novel salt-protease tolerance and transglycosylation activity[J].Journal of Agricultural and Food Chemistry, 2016:64(11):2 315-2 324.
[13] WANG H, MA R,SHI P, et al. Insights into the substrate specificity and synergy with mannanase of family 27 α-galactosidases from neosartorya fischeri, P1[J].Applied Microbiology and Biotechnology, 2015, 99(3):1 543-1 543.
[14] WANG C,WANG H,MA R,et al. Biochemical characterization of a novel thermophilic a-alactosidase from Talarorrayces leycettanus JCM12802 with significant transglycosylation activity[J]. Journal of Bioscience and Bioengineering, 2016, 121 (1):7-12.
[15] GARRO M S, VALDEZG F D, GIORI G S D.Temperature effect on the biological activity of Bifidohacterium lougum CRL 849 and Lactobacillus fermentum CRL 251 in pure and mixed cultures grown in soymilk[J].Food Microbiology,2004,21(5):511-518.
[16] 董岩岩,张燕婕,黄遵锡,等.产α-半乳糖苷酶菌株的筛选、鉴定及其酶学特性的研究[J].饲料工业,2011,32(14):20-25.
[17] 刘小丹.来源于Pedobacter sp.MJ11的α-半乳糖苷酶基因克隆、表达及其性质研究[D].哈尔滨:东北农业大学,2009.
[18] 王剑锋,陈今朝,李江,等.根霉胞内α-半乳糖苷酶的分离及其酶学性质[J].食品与发酵工业,2012,38(5):65-69.
[19] 许尧兴,李艳丽,柳永,等.黑曲霉变种RM48 α-半乳糖苷酶的分离纯化及其酶学性质研究[J].浙江大学学报(农业与生命科学版),2009,35(2):147-152.
[20] WANG H, SHI P, LUO H, et al. A thermophilic α-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk[J]. Bioresource Technology, 2014, 153:361-364.
[21] KING M R,WHITE B A,BLASCHEK H P,et al. Purification and characterization of a thermostable α-galactosidase from Thermoanaerobacterium polysaccharolyticum[J]. J Agric Food Chem, 2002, 50(20):5 676-5 682.
[22] 毕云枫,徐琳琳,姜珊,等.Thermotoga neapolitana中α-半乳糖苷酶基因的克隆表达与酶学性质研究[J].中国酿造,2017,36(1):61-65.
[23] DU F,ZHU M,WANG H,et al. Purification and characterization of an α-galactosidase from Phaseolus coccineus seeds showing degrading capability on raffinose family oligosaccharides[J]. Plant Physiology and Biochemistry,2013,69:49-53.
[24] HU Y,ZHU M,TIAN G,et al. Isolation of a protease-resistant and pH-stable α-galactosidase displaying hydrolytic efficacy toward raffinose family oligosaccharides from the button mushroom Agraicus bisporus[J]. International Journal of Biological Macromolecules,2017,104(PtA):576-583.
[25] 叶雪飞,阮晖,李青青,等.产α-半乳糖苷酶乳酸菌的筛选及酶学特性研究[J].中国食品学报,2009,9(4):64-69.
[26] CAO Y,YUAN T,SHI P,et al.Properties of a novel α-galactosidase from Streptomyces sp.S27 and its potential for soybean processing[J]. Enzyme and Microbial Technology,2010,47(7):305-312.
[27] HU Y,TIAN G,GENG X,et al.A protease-resistant α-galactosidase from Pleurotus citrinopileatus with broad substrate specificity and good hydrolytic activity on raffinose family oligosaccharides[J]. Process Biochemistry,2016,51(4):491-499.